Skip to main content

Advertisement

Log in

The optical, electrical and mechanical performance of metal oxides incorporated PVA/rGO blend: effect of metal oxide type

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of metal (M: Fe, Pb and Mn) oxides type on the optical, electrical and mechanical performance of PVA/reduced graphene oxide (PVA/rGO) blend has been explored. Plain PVA and 2.0 wt% of metal oxides polymeric composites (PCs) were equipped using the solution casting procedure. The structure variation due to metal oxides incorporation was examined by the FT-IR spectroscopy. The optical properties of the samples were obtained based on the UV–Vis–NIR measurements. The optical bandgap decreases from 5.41 eV (plain PVA) to 5.36 eV (plain PVA/rGO), 5.23 eV (Fe2O3 PC), 5.27 eV (Pb3O4 PC) and 5.22 eV (MnO2 PC). The dc-electrical conductivity of the PVA/rGO blend is strongly enhanced via metal oxides incorporation. The activation energy of the host matrix decreases from 0.66 eV (plain PVA) to 0.18 eV (plain PVA/rGO), 0.05 eV (Fe2O3 PC), 0.20 eV (Pb3O4 PC) and 0.43 eV (MnO2 PC). The dynamic mechanical analyzer (DMA) was used to investigate the effect of metal oxides incorporation on the mechanical properties of the host blend. The glass transition temperature (Tg) value increases from 59.45 °C (plain PVA) to 61.56 °C (plain PVA/rGO) and 64.68 °C (Pb3O4 PC). While it decreases to 55.04 °C (Fe2O3 PC) and 58.37 °C (MnO2 PC). These unique results exhibit that the optical, electrical and mechanical properties of polymeric blends could be controlled via metal oxides incorporation for applications in flexible optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.A.M. Issa, H.M.H. Zakaly, M. Pyshkina, M.Y.A. Mostafa, M. Rashad, T.S. Soliman, Structure, optical, and radiation shielding properties of PVA–BaTiO3 nanocomposite films: An experimental investigation. Radiat. Phys. Chem. 180, 109281 (2021)

    Google Scholar 

  2. A. Badawi, Enhancement of the optical properties of PVP using Zn1-xSnxS for UV-region optical applications. Appl. Phys. A 127(1), 51 (2021)

    ADS  Google Scholar 

  3. A. Badawi, S.S. Alharthi, Tailoring the photoluminescent and electrical properties of tin-doped ZnS@PVP polymeric composite films for LEDs applications. Superlattices Microstruct. 151C, 106838 (2021)

    Google Scholar 

  4. Z.K. Heiba, M.B. Mohamed, A. Badawi, A.A. Alhazime, The role of Cd0.9Mg0.1S nanofillers on the structural, optical, and dielectric properties of PVA/CMC polymeric blend. Chem. Phys. Lett. 770, 1460 (2021)

    Google Scholar 

  5. A. Badawi, S.S. Alharthi, A.A. Alotaibi, M.G. Althobaiti, Investigation of the mechanical and electrical properties of SnS filled PVP/PVA polymeric composite blends. J. Polym. Res. 28(6), 205 (2021)

    Google Scholar 

  6. S.S. Alharthi, A. Alzahrani, M.A.N. Razvi, A. Badawi, M.G. Althobaiti, Spectroscopic and electrical properties of Ag2S/PVA nanocomposite films for visible-light optoelectronic devices. J. Inorg. Organomet. Polym Mater. 30(10), 3878–3885 (2020)

    Google Scholar 

  7. A. Badawi, Engineering the optical properties of PVA/PVP polymeric blend in situ using tin sulfide for optoelectronics. Appl. Phys. A 126(5), 335 (2020)

    ADS  Google Scholar 

  8. T.A. Taha, A. Saleh, Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Appl. Phys. A 124(9), 600 (2018)

    ADS  Google Scholar 

  9. A. Badawi, S.S. Alharthi, M.G. Althobaiti, A.N. Alharbi, The effect of iron oxide content on the structural and optical parameters of polyvinyl alcohol/graphene nanocomposite films. J. Vinyl Addit. Technol. (2022). https://doi.org/10.1002/vnl.21889

    Article  Google Scholar 

  10. K.Y. Yasoda, S. Kumar, M.S. Kumar, K. Ghosh, S.K. Batabyal, Fabrication of MnS/GO/PANI nanocomposites on a highly conducting graphite electrode for supercapacitor application. Mater. Today Chem. 19, 100394 (2021)

    Google Scholar 

  11. K. Sreekanth, T. Siddaiah, N.O. Gopal, Y. Madhava Kumar, C. Ramu, Thermal, structural, optical and electrical conductivity studies of pure and Fe3+ ions doped PVP films for semoconducting polymer devices. Mater. Res. Innov. 25(2), 95–103 (2021)

    Google Scholar 

  12. H.O. Tekin, S.A.M. Issa, G. Kilic, H.M.H. Zakaly, A. Badawi, G. Bilal, H.A.A. Sidek, K.A. Matori, M.H.M. Zaid, Cadmium oxide reinforced 46V2O5–46P2O5–(8–x)B2O3–xCdO semiconducting oxide glasses and resistance behaviors against ionizing gamma rays. J. Market. Res. 13, 2336–2349 (2021)

    Google Scholar 

  13. A. Badawi, G.A.M. Mersal, A.A. Shaltout, J. Boman, M. Alsawat, M.A. Amin, Exploring the structural and optical properties of FeS filled graphene/PVA blend for environmental-friendly applications. J. Polym. Res. 28(7), 270 (2021)

    Google Scholar 

  14. A. Badawi, S.S. Alharthi, Controlling the optical and mechanical properties of polyvinyl alcohol using Ag2S semiconductor for environmentally friendly applications. Mater. Sci. Semiconductor Process. 116, 105139 (2020)

    Google Scholar 

  15. Y. Khairy, H.I. Elsaeedy, M.I. Mohammed, H.Y. Zahran, I.S. Yahia, Anomalous behaviour of the electrical properties for PVA/TiO2 nanocomposite polymeric films. Polym. Bull. 77(12), 6255–6269 (2020)

    Google Scholar 

  16. S.B. Aziz, M.M. Nofal, H.O. Ghareeb, E.M.A. Dannoun, S.A. Hussen, J.M. Hadi, K.K. Ahmed, A.M. Hussein, Characteristics of poly(vinyl Alcohol) (PVA) based composites integrated with green synthesized Al3+-metal complex: structural, optical, and localized density of state analysis. Polymers 13(8), 1316 (2021)

    Google Scholar 

  17. R.J. Sengwa, P. Dhatarwal, Nanofiller concentration-dependent appreciably tailorable and multifunctional properties of (PVP/PVA)/SnO2 nanocomposites for advanced flexible device technologies. J. Mater. Sci. Mater. Electron. 32(7), 9661–9674 (2021)

    Google Scholar 

  18. A. Badawi, S.S. Alharthi, H. Assaedi, A.N. Alharbi, M.G. Althobaiti, Cd0.9Co01.S nanostructures concentration study on the structural and optical properties of SWCNTs/PVA blend. Chem. Phys. Lett. 775, 1701 (2021)

    Google Scholar 

  19. A. Badawi, N. Al-Hosiny, S. Abdallah, The photovoltaic performance of CdS quantum dots sensitized solar cell using graphene/TiO2 working electrode. Superlattices Microstruct. 81, 88–96 (2015)

    ADS  Google Scholar 

  20. S. Ningaraju, H.B. Ravikumar, Studies on electrical conductivity of PVA/graphite oxide nanocomposites: a free volume approach. J. Polym. Res. 24(1), 11 (2016)

    Google Scholar 

  21. D.-Y. Kim, B.N. Joshi, J.-J. Park, J.-G. Lee, Y.-H. Cha, T.-Y. Seong, S. In Noh, H.-J. Ahn, S.S. Al-Deyabe, S.S. Yoon, Graphene–titania films by supersonic kinetic spraying for enhanced performance of dye-sensitized solar cells. Ceram. Int. 40(7), 11089–11097 (2014)

    Google Scholar 

  22. M. Aslam, M.A. Kalyar, Z.A. Raza, Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets. Mater. Res. Express 3(10), 105036 (2016)

    ADS  Google Scholar 

  23. B. Mortazavi, M. Shahrokhi, M.E. Madjet, T. Hussain, X. Zhuang, T. Rabczuk, N-, B-, P-, Al-, As-, and Ga-graphdiyne/graphyne lattices: first-principles investigation of mechanical, optical and electronic properties. J. Mater. Chem. C 7(10), 3025–3036 (2019)

    Google Scholar 

  24. M. Gozutok, V. Sadhu, H.T. Sasmazel, Development of poly(vinyl alcohol) (PVA)/reduced graphene oxide (rGO) electrospun mats. J Nanosci Nanotechnol 19(7), 4292–4298 (2019)

    Google Scholar 

  25. P.W. Sayyad, N.N. Ingle, T. Al-Gahouari, M.M. Mahadik, G.A. Bodkhe, S.M. Shirsat, M.D. Shirsat, Selective Hg2+ sensor: rGO-blended PEDOT:PSS conducting polymer OFET. Appl. Phys. A 127(3), 167 (2021)

    ADS  Google Scholar 

  26. J. Johny, S. Sepulveda-Guzman, B. Krishnan, D.A. Avellaneda, J.A. Aguilar Martinez, M.R. Anantharaman, S. Shaji, Tin sulfide: Reduced graphene oxide nanocomposites for photovoltaic and electrochemical applications. Solar Energy Mater. Solar Cells 189, 53–62 (2019)

    Google Scholar 

  27. M. Aslam, M.A. Kalyar, Z.A. Raza, Graphene oxides nanosheets mediation of poly(vinyl alcohol) films in tuning their structural and opto-mechanical attributes. J. Mater. Sci. Mater. Electron. 28(18), 13401–13413 (2017)

    Google Scholar 

  28. S. Mahendia, H.G. Kandhol, U.P. Deshpande, S. Kumar, Determination of glass transition temperature of reduced graphene oxide-poly(vinyl alcohol) composites using temperature dependent Fourier transform infrared spectroscopy. J. Mol. Struct. 1111, 46–54 (2016)

    ADS  Google Scholar 

  29. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, Characterization and some physical studies of PVA/PVP filled with MWCNTs. J. Market. Res. 8(1), 904–913 (2019)

    Google Scholar 

  30. .-C. Cao, W. Wei, J. Liu, Q. You, F. Liu, Q. Lan, C. Zhang, C. Liu, J. Zhao, The preparation of graphene reinforced poly(vinyl alcohol) antibacterial nanocomposite thin Film. Int. J. Polym. Sci. 2015, 407043 (2015). https://doi.org/10.1155/2015/407043

    Article  Google Scholar 

  31. H. Donya, T.A. Taha, A. Alruwaili, I.B.I. Tomsah, M. Ibrahim, Micro-structure and optical spectroscopy of PVA/iron oxide polymer nanocomposites. J. Market. Res. 9(4), 9189–9194 (2020)

    Google Scholar 

  32. Z.A. Alrowaili, T.A. Taha, K.S. El-Nasser, H. Donya, Significant enhanced optical parameters of PVA-Y2O3 polymer nanocomposite films. J. Inorg. Organomet. Polym Mater. 31(7), 3101–3110 (2021)

    Google Scholar 

  33. Y. Khairy, M.M. Abdel-Aziz, H. Algarni, A.M. Alshehri, I.S. Yahia, H.E. Ali, The optical characteristic of PVA composite films doped by ZrO2 for optoelectronic and block UV-Visible applications. Mater. Res. Express 6(11), 115346 (2019)

    ADS  Google Scholar 

  34. Z.K. Heiba, M.B. Mohamed, A.M. El-naggar, Y. Altowairqi, A.M. Kamal, Impact of ZnCdS/M (M = Co, Fe, Mn, V) doping on the structure and optical properties of PVA/PVP polymer. J. Polym. Res. 28(12), 472 (2021)

    Google Scholar 

  35. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press Handbook, New York, 1985)

    Google Scholar 

  36. E.M. Abdelrazek, H.M. Ragab, Spectroscopic and dielectric study of iodine chloride doped PVA/PVP blend. Indian J. Phys. 89(6), 577–585 (2015)

    ADS  Google Scholar 

  37. N.M. Al-Hosiny, S.S. Alharthi, A. Badawi, Optical properties of solar irradiated Gafchromic EBT films. J. Market. Res. 14, 1914–1920 (2021)

    Google Scholar 

  38. A. Badawi, M.G. Althobaiti, S.S. Alharthi, A.M. Al-Baradi, Tailoring the optical properties of CdO nanostructures via barium doping for optical windows applications. Phys. Lett. A 411, 127553 (2021)

    Google Scholar 

  39. Z.K. Heiba, M.B. Mohamed, A. Badawi, N.M. Farag, Effect of sulfur deficiency on the structural, optical and electronic properties of MnS nanostructures. Chem. Phys. Lett. 779, 138877 (2021)

    Google Scholar 

  40. A. Badawi, M.G. Althobaiti, Effect of Cu-doping on the structure, FT-IR and optical properties of Titania for environmental-friendly applications. Ceram. Int. 47(8), 11777–11785 (2021)

    Google Scholar 

  41. A. Badawi, W.O. Al-Gurashi, A.M. Al-Baradi, F. Abdel-Wahab, Photoacoustic spectroscopy as a non-destructive technique for optical properties measurements of nanostructures. Optik 201, 163389 (2020)

    ADS  Google Scholar 

  42. A. Badawi, A.H. Al Otaibi, A.M. Albaradi, N. Al-Hosiny, S.E. Alomairy, Tailoring the energy band gap of alloyed Pb1−xZnxS quantum dots for photovoltaic applications. J. Mater. Sci. Mater. Electron. 29(24), 20914–20922 (2018)

    Google Scholar 

  43. J. Tauc, Amorphous and Liquid Semiconductors (Springer, Boston, 1974)

    Google Scholar 

  44. L. Dejam, S. Solaymani, A. Achour, S. Stach, Ş Ţălu, N.B. Nezafat, V. Dalouji, A.A. Shokri, A. Ghaderi, Correlation between surface topography, optical band gaps and crystalline properties of engineered AZO and CAZO thin films. Chem. Phys. Lett. 719, 78–90 (2019)

    ADS  Google Scholar 

  45. A.M. Al-Baradi, F.A. Altowairqi, A.A. Atta, A. Badawi, S.A. Algarni, A.S.A. Almalki, A.M. Hassanien, A. Alodhayb, A.M. Kamal, M.M. El-Nahass, Structural and optical characteristics features of RF sputtered CdS/ZnO thin films. Chin. Phys. B 29(8), 080702 (2020)

    ADS  Google Scholar 

  46. V. Dalouji, S. Elahi, S. Solaymani, A. Ghaderi, H. Elahi, Carbon films embedded by nickel nanoparticles: fluctuation in hopping rate and variable-range hopping with respect to annealing temperature. Appl. Phys. A 122(5), 541 (2016)

    ADS  Google Scholar 

  47. A. Badawi, N. Al Hosiny, Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films. Chin. Phys. B 24(10), 105101 (2015)

    ADS  Google Scholar 

  48. M. Aslam, M.A. Kalyar, Z.A. Raza, Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets. Mater. Res. Express 3, 105036 (2016)

    ADS  Google Scholar 

  49. R. Kant, D. Kumar, V. Dutta, High coercivity α-Fe2O3 nanoparticles prepared by continuous spray pyrolysis. RSC Adv. 5(65), 52945–52951 (2015)

    ADS  Google Scholar 

  50. A. Ibrahim, M.H. Abdel-Aziz, M.S. Zoromba, A.F. Al-Hossainy, Structural, optical, and electrical properties of multi-walled carbon nanotubes/polyaniline/Fe3O4 ternary nanocomposites thin film. Synth. Met. 238, 1–13 (2018)

    Google Scholar 

  51. T.A. Taha, M.H. Mahmoud, A. Hayat, Dielectric relaxation studies on PVC-Pb3O4 polymer nanocomposites. J. Mater. Sci. Mater. Electron. 32(23), 27666–27675 (2021)

    Google Scholar 

  52. S.A. Mansour, A.H. Farha, M.F. Kotkata, Sol–gel synthesized Co-doped anatase TiO2 nanoparticles: structural, optical, and magnetic characterization. J. Inorg. Organomet. Polym Mater. 29(4), 1375–1382 (2019)

    Google Scholar 

  53. A. El Mragui, Y. Logvina, L. Pinto da Silva, Synthesis of Fe- and Co-doped TiO(2) with improved photocatalytic activity under visible irradiation toward carbamazepine degradation. Materials 12(23), 3874 (2019)

    ADS  Google Scholar 

  54. M.T. Rahman, M.A. Hoque, G.T. Rahman, M.M. Azmi, M.A. Gafur, R.A. Khan, M.K. Hossain, Fe2O3 nanoparticles dispersed unsaturated polyester resin based nanocomposites: effect of gamma radiation on mechanical properties. Radiat. Eff. Defects Solids 174(5–6), 480–493 (2019)

    ADS  Google Scholar 

  55. F.M. Ali, R.M. Kershi, M.A. Sayed, Y.M. AbouDeif, Evaluation of structural and optical properties of Ce3+ ions doped (PVA/PVP) composite films for new organic semiconductors. Phys. B 538, 160–166 (2018)

    ADS  Google Scholar 

  56. Y. Khairy, I.S. Yahia, H. Elhosiny Ali, Facile synthesis, structure analysis and optical performance of manganese oxide-doped PVA nanocomposite for optoelectronic and optical cut-off laser devices. J. Mater. Sci. Mater. Electron. 31(10), 8072–8085 (2020)

    Google Scholar 

  57. R.F. Bhajantri, V. Ravindrachary, B. Poojary, I.A. Harisha, V. Crasta, Studies on fluorescent PVA + PVP + MPDMAPP composite films. Polym. Eng. Sci. 49(5), 903–909 (2009)

    Google Scholar 

  58. S. Rajendran, M. Sivakumar, R. Subadevi, Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater. Lett. 58(5), 641–649 (2004)

    Google Scholar 

  59. M. Irfan, A. Manjunath, S.S. Mahesh, R. Somashekar, T. Demappa, Influence of NaF salt doping on electrical and optical properties of PVA/PVP polymer blend electrolyte films for battery application. J. Mater. Sci. Mater. Electron. 32(5), 5520–5537 (2021)

    Google Scholar 

  60. S. Muntaz Begum, K. Ravindranadh, R.V.S.S.N. Ravikumar, M.C. Rao, Structural and luminescent properties of PVA capped ZnSe nanoparticles. Mater. Res. Innov. 22(1), 37–42 (2018)

    Google Scholar 

  61. N.H.A. Ngadiman, A. Idris, M. Irfan, D. Kurniawan, N.M. Yusof, R. Nasiri, γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold. J. Mech. Behav. Biomed. Mater. 49, 90–104 (2015)

    Google Scholar 

  62. A. Sankhla, R. Sharma, R.S. Yadav, D. Kashyap, S.L. Kothari, S. Kachhwaha, Biosynthesis and characterization of cadmium sulfide nanoparticles—an emphasis of zeta potential behavior due to capping. Mater. Chem. Phys. 170, 44–51 (2016)

    Google Scholar 

  63. R.F. Bhajantri, V. Ravindrachary, A. Harisha, V. Crasta, S.P. Nayak, B. Poojary, Microstructural studies on BaCl2 doped poly(vinyl alcohol). Polymer 47(10), 3591–3598 (2006)

    Google Scholar 

  64. O.G. Abdullah, S.B. Aziz, M.A. Rasheed, Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte. Results Phys. 6, 1103–1108 (2016)

    ADS  Google Scholar 

  65. S.B. Aziz, Modifying poly(Vinyl Alcohol) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J. Electron. Mater. 45(1), 736–745 (2016)

    ADS  Google Scholar 

  66. M. Rashad, H.A. Saudi, H.M.H. Zakaly, S.A.M. Issa, A.M. Abd-Elnaiem, Control optical characterizations of Ta+5–doped B2O3–Si2O–CaO–BaO glasses by irradiation dose. Opt. Mater. 112, 110613 (2021)

    Google Scholar 

  67. S. Choudhary, R.J. Sengwa, ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr. Appl. Phys. 18(9), 1041–1058 (2018)

    ADS  Google Scholar 

  68. P. Dhatarwal, R.J. Sengwa, Investigation on the optical properties of (PVP/PVA)/Al2O3 nanocomposite films for green disposable optoelectronics. Phys. B Condens. Matter 613, 412989 (2021)

    Google Scholar 

  69. A.M. El Sayed, W.M. Morsi, α-Fe2O3 /(PVA + PEG) Nanocomposite films; synthesis, optical, and dielectric characterizations. J. Mater. Sci. 49(15), 5378–5387 (2014)

    ADS  Google Scholar 

  70. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci. 26(7), 5303–5309 (2015)

    Google Scholar 

  71. Y. Khairy, M.I. Mohammed, H.I. Elsaeedy, I.S. Yahia, Optical and electrical properties of SnBr 2-doped polyvinyl alcohol (PVA) polymeric solid electrolyte for electronic and optoelectronic applications. Optik 228, 166129 (2021)

    ADS  Google Scholar 

  72. T.S. Soliman, M.F. Zaki, M.M. Hessien, S.I. Elkalashy, The structure and optical properties of PVA-BaTiO3 nanocomposite films. Optical Mater. 111, 110648 (2020)

    Google Scholar 

  73. A. Badawi, Engineering the energy bandgap of lead cobalt sulfide quantum dots for visible light optoelectronics. J. Mater. Sci. Mater. Electron. 31, 17726–17735 (2020)

    Google Scholar 

  74. Z.K. Heiba, M.B. Mohamed, Effect of annealed and Mg-doped nano ZnO on physical properties of PVA. J. Mol. Struct. 1181, 507–517 (2019)

    ADS  Google Scholar 

  75. J.Q.M. Almarashi, M.H. Abdel-Kader, Exploring nano-sulfide enhancements on the optical, structural and thermal properties of polymeric nanocomposites. J. Inorg. Organomet. Polym Mater. 30(8), 3230–3240 (2020)

    Google Scholar 

  76. R. Nangia, N.K. Shukla, A. Sharma, Optical and structural properties of Se80Te15Bi5/PVA nanocomposite films. J. Mol. Struct. 1177, 323–330 (2019)

    ADS  Google Scholar 

  77. T.H. AlAbdulaal, H.E. Ali, V. Ganesh, A.M. Aboraia, Y. Khairy, H.H. Hegazy, A.V. Soldatov, H.Y. Zahran, M.S. Abdel-wahab, I.S. Yahia, Investigating NaIO3 doped PVA polymeric nanocomposites via the structural morphology and linear and nonlinear optical analysis: For optoelectronic systems. Optik 245, 167724 (2021)

    ADS  Google Scholar 

  78. A.M. Ibrahim, H.I. Alkhammash, Influence of extra-addition of sulfur on the optical, electrical, and photoconductivity of the borate glasses containing MoO3. J. Mater. Sci. Mater. Electron. 32, 7294–7306 (2021)

    Google Scholar 

  79. Z.K. Heiba, M.B. Mohamed, A. Badawi, Structure, optical and electronic characteristics of iron-doped cadmium sulfide under nonambient atmosphere. Appl. Phys. A 127(3), 166 (2021)

    ADS  Google Scholar 

  80. N. Ahad, E. Saion, E. Gharibshahi, Structural, thermal, and electrical properties of PVA-sodium salicylate solid composite polymer electrolyte. J. Nanomater. 2012, 857569 (2012). https://doi.org/10.1155/2012/857569

    Article  Google Scholar 

  81. M. Watanabe, K. Sanui, N. Ogata, F. Inoue, T. Kobayashi, Z. Ohtaki, Temperature dependence of ionic conductivity of crosslinked Poly(propylene oxide) films dissolving lithium salts and their interfacial charge transfer resistance in contact with lithium electrodes. Polym. J. 16(9), 711–716 (1984)

    Google Scholar 

  82. S. Ramesh, A.H. Yahaya, A.K. Arof, Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152–153, 291–294 (2002)

    Google Scholar 

  83. M. Ravi, S. Bhavani, K. Kiran Kumar, V.V.R. Narasimaha Rao, Investigations on electrical properties of PVP:KIO4 polymer electrolyte films. Solid State Sci. 19, 85–93 (2013)

    ADS  Google Scholar 

  84. N.M. Al-Hosiny, S. Abdallah, M.A.A. Moussa, A. Badawi, Optical, thermophysical and electrical characterization of PMMA (CdSe QDs) composite films. J. Polym. Res. 20(2), 1–8 (2013)

    Google Scholar 

  85. K. Sewda, S.N. Maiti, Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polym. Bull. 70, 2657–2674 (2013)

    Google Scholar 

  86. A. Badawi, Characterization of the optical and mechanical properties of CdSe QDs/PMMA nanocomposite films. J. Mater. Sci. Mater. Electron. 26(6), 3450–3457 (2015)

    Google Scholar 

  87. N.G. Sahooa, S. Ranab, J.W. Chob, L. Li, S.H. Chana, Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837–867 (2010)

    Google Scholar 

  88. Y.-L. Huang, C.-C.M. Ma, S.-M. Yuen, C.-Y. Chuang, H.-C. Kuan, C.-L. Chiang, S.-Y. Wu, Effect of maleic anhydride modified MWCNTs on the morphology and dynamic mechanical properties of its PMMA composites. Mater. Chem. Phys. 129(3), 1214–1220 (2011)

    Google Scholar 

  89. A. Montazeri, K. Pourshamsian, M. Riazian, Viscoelastic properties and determination of free volume fraction of multi-walled carbon nanotube/epoxy composite using dynamic mechanical thermal analysis. Mater. Des. 36, 408–414 (2012)

    Google Scholar 

  90. V. Mathur, M. Dixit, K.S. Rathore, N.S. Saxena, K.B. Sharma, Morphological and mechanical characterization of a PMMA/CdS nanocomposite. Front. Chem. Sci. Eng. 5(2), 258–263 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors thank Taif University Researchers Supporting Project number (TURSP-2020/248), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Badawi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badawi, A., Alharthi, S.S. The optical, electrical and mechanical performance of metal oxides incorporated PVA/rGO blend: effect of metal oxide type. Appl. Phys. A 128, 328 (2022). https://doi.org/10.1007/s00339-022-05495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05495-z

Keywords

Navigation