Skip to main content
Log in

Tetragonal-structure germanene van der Waals 2D crystal and its Raman spectra

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new structure of germanene had predicted theoretically. We investigated its vibrational properties and calculated the polarization direction dependent Raman spectra. The five Raman active modes [50.7 cm−1 (Eg), 189.8 cm−1 (B1g), 188.5 cm−1 (B2g), 190.4 cm−1 (B2g) and 256.7 cm−1 (A1g)] are got. By calculating Raman tensor of each Raman active mode, we obtained polarization angle dependent Raman intensities. In addition, the Raman spectra of Ge(tP12) (one of the most common germanium crystals) is calculated for comparison. The different Raman spectra results can help material scientists to identify the existence of tetragonal-structure germanene when they are growing it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Takeda, K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B Condens. Matter 50, 14916–14922 (1994)

    ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    ADS  Google Scholar 

  3. L. Cui, J. Wang, M. Sun, Graphene plasmon for optoelectronics. Rev. Phys. 6, 100054 (2021)

    Google Scholar 

  4. C. Chen, X. Chen, H. Yu, Y. Shao, Q. Guo, B. Deng, S. Lee, C. Ma, K. Watanabe, T. Taniguchi, J.G. Park, S. Huang, W. Yao, F. Xia, Symmetry-controlled electron–phonon interactions in van der Waals Heterostructures. ACS Nano 13, 552–559 (2019)

    Google Scholar 

  5. G.S.N. Eliel, M.V.O. Moutinho, A.C. Gadelha, A. Righi, L.C. Campos, H.B. Ribeiro, P.W. Chiu, K. Watanabe, T. Taniguchi, P. Puech, M. Paillet, T. Michel, P. Venezuela, M.A. Pimenta, Intralayer and interlayer electron-phonon interactions in twisted graphene heterostructures. Nat. Commun. 9, 1221 (2018)

    ADS  Google Scholar 

  6. C. Jin, J. Kim, J. Suh, Z. Shi, B. Chen, X. Fan, M. Kam, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, J. Wu, F. Wang, Interlayer electron–phonon coupling in WSe2/hBN heterostructures. Nat. Phys. 13, 127–131 (2016)

    Google Scholar 

  7. M.L. Lin, Q.H. Tan, J.B. Wu, X.S. Chen, J.H. Wang, Y.H. Pan, X. Zhang, X. Cong, J. Zhang, W. Ji, P.A. Hu, K.H. Liu, P.H. Tan, Moire phonons in twisted bilayer MOS2. ACS Nano 12, 8770–8780 (2018)

    Google Scholar 

  8. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.S. Huang, C.H. Ho, J. Yan, D.F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F.M. Peeters, J. Wu, Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014)

    ADS  Google Scholar 

  9. M. Yagmurcukardes, S. Ozen, F. Iyikanat, F.M. Peeters, H. Sahin, Raman fingerprint of stacking order in HfS2−Ca(OH)2 heterobilayer. Phys. Rev. B 99, 205405 (2019)

    ADS  Google Scholar 

  10. L.L. Li, C. Bacaksiz, M. Nakhaee, R. Pentcheva, F.M. Peeters, M. Yagmurcukardes, Single-layer Janus black arsenic-phosphorus (b-AsP): optical dichroism, anisotropic vibrational, thermal, and elastic properties. Phys. Rev. B 101, 134102 (2020)

    ADS  Google Scholar 

  11. Y. Chen, M. Sun, Two-dimensional WS2/MOS2 heterostructures: properties and applications. Nanoscale 13, 5594–5619 (2021)

    Google Scholar 

  12. L. Cui, M. Sun, Graphene plasmon-enhanced polarization-dependent interfacial charge transfer excitons in 2D graphene-black phosphorus heterostructures in NIR and MIR regions. J. Phys. Chem. C 125, 22370–22378 (2021)

    Google Scholar 

  13. X. Mu, M. Sun, Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Appl. Phys. Lett. 117, 091601 (2020)

    ADS  Google Scholar 

  14. Y. You, X.-X. Zhang, T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, T.F. Heinz, Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015)

    Google Scholar 

  15. K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016)

    ADS  Google Scholar 

  16. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. PNAS 102, 10451–10453 (2005)

    ADS  Google Scholar 

  17. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    ADS  Google Scholar 

  18. X. Mu, M. Sun, The linear and non-linear optical absorption and asymmetrical electromagnetic interaction in chiral twisted bilayer graphene with hybrid edges. Mater.Today Phys. 14, 100222 (2020)

    Google Scholar 

  19. J. Wang, X. Mu, L. Wang, M. Sun, Properties and applications of new superlattice: twisted bilayer graphene. Mater. Today Phys. 9, 100099 (2019)

    Google Scholar 

  20. S. Wang, C. Ren, H. Tian, J. Yu, M. Sun, MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: a first-principles study. Phys Chem. Chem. Phys. 20, 13394–13399 (2018)

    Google Scholar 

  21. Z. Cui, K. Ren, Y. Zhao, X. Wang, H. Shu, J. Yu, W. Tang, M. Sun, Electronic and optical properties of van der Waals heterostructures of g-GaN and transition metal dichalcogenides. Appl. Surf. Sci. 492, 513–519 (2019)

    ADS  Google Scholar 

  22. X. Chen, Y. Liang, L. Wan, Z. Xie, C.D. Easton, L. Bourgeois, Z. Wang, Q. Bao, Y. Zhu, S. Tao, H. Wang, Construction of porous N-doped graphene layer for efficient oxygen reduction reaction. Chem. Eng. Sci. 194, 36–44 (2019)

    Google Scholar 

  23. M. Sun, U. Schwingenschlögl, B2P6: a two-dimensional anisotropic janus material with potential in photocatalytic water splitting and metal-ion batteries. Chem. Mater. 32, 4795–4800 (2020)

    Google Scholar 

  24. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)

    ADS  Google Scholar 

  25. L. Li, S.Z. Lu, J. Pan, Z. Qin, Y.Q. Wang, Y. Wang, G.Y. Cao, S. Du, H.J. Gao, Buckled germanene formation on Pt(111). Adv. Mater. 26, 4820–4824 (2014)

    Google Scholar 

  26. J. Zhuang, N. Gao, Z. Li, X. Xu, J. Wang, J. Zhao, S.X. Dou, Y. Du, Cooperative electron-phonon coupling and buckled structure in germanene on Au(111). ACS Nano 11, 3553–3559 (2017)

    Google Scholar 

  27. D.A. Muzychenko, A.I. Oreshkin, A.D. Legen’ka, C. Van Haesendonck, Atomic insights into single-layer and bilayer germanene on Al(111) surface. Mater. Today Phys. 14, 100241 (2020)

    Google Scholar 

  28. C.C. Liu, W. Feng, Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)

    ADS  Google Scholar 

  29. G. Baskaran, Silicene and germanene as prospective playgrounds for room temperature superconductivity, in Many-body approaches at different scales, ed. by G. Angilella, C. Amovilli (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-72374-7_5

    Chapter  Google Scholar 

  30. X.L. Sheng, Q.B. Yan, F. Ye, Q.R. Zheng, G. Su, T-carbon: a novel carbon allotrope. Phys. Rev. Lett. 106, 155703 (2011)

    ADS  Google Scholar 

  31. J. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, Z. Dan, C. Ma, W. Wang, H. Su, C. Niu, Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat. Commun. 8, 683 (2017)

    ADS  Google Scholar 

  32. C. Xu, Y. Wang, R. Han, H. Tu, Y. Yan, Topological node line semimetal state in two-dimensional tetragonal allotrope of Ge and Sn. New J. Phys. 21, 033005 (2019)

    ADS  Google Scholar 

  33. S. Ghosal, A. Bandyopadhyay, D. Jana, Electric field induced band tuning, optical and thermoelectric responses in tetragonal germanene: a theoretical approach. Phys. Chem. Chem. Phys. 22, 19957–19968 (2020)

    Google Scholar 

  34. S. Ghosal, S. Chowdhury, D. Jana, Impressive thermoelectric figure of merit in two-dimensional tetragonal pnictogens: a combined first-principles and machine-learning approach. ACS Appl. Mater. Interfaces 13, 59092–59103 (2021)

    Google Scholar 

  35. S. Ghosal, D. Jana, Mechanical characteristics and electric field-influenced thermoelectric and optical responses of tetragonal germanene. J. Phys. D Appl. Phys. 54, 405303 (2021)

    Google Scholar 

  36. S. Ghosal, S. Nath, A. Bandyopadhyay, S. Sen, D. Jana, Tetragonal silicene and germanene quantum dots: candidates for enhanced nonlinear optical and photocatalytic activity. J. Phys. Chem. C 125, 21718–21728 (2021)

    Google Scholar 

  37. J. Yuan, M. Zhao, W. Yu, Y. Lu, C. Chen, M. Xu, S. Li, K.P. Loh, Q. Bao, Raman spectroscopy of two-dimensional Bi(2)TexSe3—x platelets produced by solvothermal method. Materials (Basel) 8, 5007–5017 (2015)

    ADS  Google Scholar 

  38. L. Liang, V. Meunier, First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 6, 5394–5401 (2014)

    ADS  Google Scholar 

  39. M. Jin, W. Zheng, Y. Ding, Y. Zhu, W. Wang, F. Huang, Raman Tensor of van der Waals MoSe2. J. Phys. Chem. Lett. 11, 4311–4316 (2020)

    Google Scholar 

  40. T.S. Bhattacharya, S. Mitra, S.S. Singha, P.K. Mondal, A. Singha, Tailoring light-matter interaction in WS2–gold nanoparticles hybrid systems. Phys. Rev. B 100, 235438 (2019)

    ADS  Google Scholar 

  41. W. Zhao, Q. Wu, Q. Hao, J. Wang, M. Li, Y. Zhang, K. Bi, Y. Chen, Z. Ni, Plasmon–phonon coupling in monolayer WS2. Appl. Phys. Lett. 108, 131903 (2016)

    ADS  Google Scholar 

  42. M. Jin, W. Zheng, Y. Ding, Y. Zhu, W. Wang, F. Huang, Raman tensor of WSe2 via angle-resolved polarized raman spectroscopy. J. Phys. Chem. C 123, 29337–29342 (2019)

    Google Scholar 

  43. J. Fan, J. Song, Y. Cheng, M. Sun, Pressure-dependent interfacial charge transfer excitons in WSe2–MoSe2 heterostructures in near infrared region. Results Phys. 24, 104110 (2021)

    Google Scholar 

  44. Y.-F. Zhao, Z. Guan, N. Zhong, F.-Y. Yue, P.-H. Xiang, C.-G. Duan, Raman spectra of bulk and few-layer GeSe from first-principles calculations. Front. Mater. 8, 736057 (2021)

    Google Scholar 

  45. Y. Zhu, W. Zheng, W. Wang, S. Zhu, L. Li, L. Cheng, M. Jin, Y. Ding, F. Huang, Raman tensor of layered black phosphorus. PhotoniX 1, 17 (2020)

    ADS  Google Scholar 

  46. M. Sun, J.P. Chou, J. Yu, W. Tang, Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures. Phys. Chem. Chem. Phys. 19, 17324–17330 (2017)

    Google Scholar 

  47. Y. Zhu, W. Zheng, W. Wang, S. Zhu, L. Cheng, L. Li, Z. Lin, Y. Ding, M. Jin, F. Huang, Raman tensor of layered black arsenic. J. Raman Spectrosc. 51, 1324–1330 (2020)

    ADS  Google Scholar 

  48. M. Wen, X. Chen, Z. Zheng, S. Deng, Z. Li, W. Wang, H. Chen, In-plane anisotropic Raman spectroscopy of van der Waals α-MoO3. J. Phys. Chem. C 125, 765–773 (2020)

    Google Scholar 

  49. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996)

    ADS  Google Scholar 

  50. A. Togo, L. Chaput, I. Tanaka, G. Hug, First-principles phonon calculations of thermal expansion inTi3SiC2, Ti3AlC2, and Ti3GeC2. Phys. Rev. B 81, 174301 (2010)

    ADS  Google Scholar 

  51. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 47, 558–561 (1993)

    ADS  Google Scholar 

  52. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter 49, 14251–14269 (1994)

    ADS  Google Scholar 

  53. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter 59, 1758–1775 (1999)

    ADS  Google Scholar 

  54. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B Condens. Matter 46, 6671–6687 (1992)

    ADS  Google Scholar 

  55. M. Ceriotti, F. Pietrucci, M. Bernasconi, Ab initiostudy of the vibrational properties of crystalline TeO2: the α, β and γ phases. Phys. Rev. B 73, 104304 (2006)

    ADS  Google Scholar 

  56. Z. Deng, Z. Li, W. Wang, J. She, Vibrational properties and Raman spectra of pristine and fluorinated blue phosphorene. Phys. Chem. Chem. Phys. 21, 1059–1066 (2019)

    Google Scholar 

  57. T. Shegai, G. Haran, Probing the Raman scattering tensors of individual molecules. J. Phys. Chem. B 110, 2459–2461 (2006)

    Google Scholar 

  58. C. Kranert, C. Sturm, R. Schmidt-Grund, M. Grundmann, Raman tensor elements of beta-Ga2O3. Sci. Rep. 6, 35964 (2016)

    ADS  Google Scholar 

  59. T. Sander, S. Eisermann, B. Meyer, P. Klar, Raman tensor elements of wurtzite ZnO. Phys. Rev. B 85, 165208 (2012)

    ADS  Google Scholar 

  60. W. Zheng, R. Zheng, F. Huang, H. Wu, F. Li, Raman tensor of AlN bulk single crystal. Photonics Res. 3, 38–43 (2015)

    Google Scholar 

  61. P. Umari, A. Pasquarello, A. Dal Corso, Raman scattering intensities in alpha-quartz: a first-principles investigation. Phys. Rev. B 63, 094305 (2001)

    ADS  Google Scholar 

  62. S. Saboori, Z. Deng, Z. Li, W. Wang, J. She, Beta-As monolayer: vibrational properties and Raman spectra. ACS Omega 4, 10171–10175 (2019)

    Google Scholar 

  63. S. Saboori, W. Wang, Z.B. Li, J. She, Raman spectra of MXenes Zr2X (X=C and N). Nanotechnology 31, 405708 (2020)

    ADS  Google Scholar 

  64. G. Luo, L. Wang, H. Li, R. Qin, J. Zhou, L. Li, Z. Gao, W.-N. Mei, J. Lu, S. Nagase, Polarized nonresonant raman spectra of graphene nanoribbons. J. Phys. Chem. C 115, 24463–24468 (2011)

    Google Scholar 

  65. H. Huang, W. Wang, S. Zhang, Theoretical assessment of Raman spectra on MXene Ti2C: from monolayer to bilayer. Phys. Chem. Chem. Phys. 23, 19884–19891 (2021)

    Google Scholar 

  66. A. Wosylus, Y. Prots, W. Schnelle, M. Hanfland, U. Schwarz, Crystal structure refinement of Ge(tP12), physical properties and pressure-induced phase transformation Ge(tP12)<–>Ge(tI4). Zeitschrift für Naturforschung B 63, 608–614 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Key-Area Research and Development Program of GuangDong Province (2019B030330001), Science and Technology Projects in Guangzhou (No. 202102080361), National R&D Key Plan Project of China (2016YFA0202000), Guangzhou Science Technology and Innovation Commission (grant no. 201607020012), Natural Science Foundation of Guangdong Province (2018B030311045) and Physical Research Platform (PRP) in School of Physics, SYSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiliang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 390 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Wang, W. Tetragonal-structure germanene van der Waals 2D crystal and its Raman spectra. Appl. Phys. A 128, 363 (2022). https://doi.org/10.1007/s00339-022-05492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05492-2

Keywords

Navigation