Skip to main content
Log in

Investigation of physicochemical properties, photoluminescence, laser damage threshold, antimicrobial, NLO activity of L-proline manganese chloride monohydrate for optoelectronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organometallic single crystal of L-proline manganese chloride monohydrate (LPMCM) was synthesized and crystallized from slow solvent evaporation techniques at room temperature. Single crystal XRD study was used to find the various structure parameters of the grown single crystal. The grown crystals were characterized by powder XRD studies and its diffraction patterns were indexed using AUTOX 93 software. All the presented functional groups were identified by FT-IR and FT-Raman spectral analysis. Optical properties of the grown LPMCM crystal were investigated by UV–Vis–NIR spectroscopy. The luminescence property of the grown crystal was recorded using photoluminescence spectroscopy. Second harmonic generation efficiency of the grown crystal is about 0.7 times that of urea. The laser-induced surface damage threshold value for the LPMCM crystal was measured using Nd: YAG laser. The mechanical behavior of the LPMCM crystal was estimated by Vickers microhardness tester. The dielectric constant and dielectric loss of the crystals were calculated at different temperature. Thermal stability of the LPMCM crystal was determined by thermogravimetric and differential scanning calorimetric analyses. Chemical etching analysis has been employed to study the inclusions or impurities present in the grown crystal. The antimicrobial activity of the grown crystal was studied against one Gram-positive (Staphylococcus aureus) and one Gram-negative (Escherichia coli) bacteria. Due to the presence of metal ion coordination in the LPMCM crystal, it has led to the prominent effect on the antimicrobial activity of the LPMCM single crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. C. Chen, G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986)

    ADS  Google Scholar 

  2. T. Mallik, T. Kar, J. Cryst. Growth 285, 182 (2005)

    ADS  Google Scholar 

  3. D.S. Chemla, J. Zyss (eds.), Nonlinear optical properties of organic molecules and crystals (Academic Press, New York, 1987)

    Google Scholar 

  4. P.N. Prasad, D.J. Williams, Introduction to Nonlinear optical effects in molecules & polymers (Wiley, New York, 1991)

    Google Scholar 

  5. M.H. Jiang, Q. Fang, Adv. Mater. 11, 1147 (1999)

    Google Scholar 

  6. G. Zhang, M. Liu, D. Xu, D. Yuan, J. Mater. Sci. Lett. 19, 1255 (2000)

    Google Scholar 

  7. M. Fleck, A.M. Petrosyan, Salts of amino acids (Springer International Publishing, Switzerland, 2014)

    Google Scholar 

  8. M.S. Shongwe, M. Mikuriya, E.W. Ainscough, A.M. Brodie, J. Chem. Soc. Chem. Comm. (1994). https://doi.org/10.1039/C39940000887

    Article  Google Scholar 

  9. M.L. Caroline, A. Kandasamy, R. Mohan, S. Vasudevan, J. Cryst. Growth. 311, 1161–1165 (2009)

    ADS  Google Scholar 

  10. G. Anandha Babu, P. Ramasamy, Mater. Chem. Phys. 113, 727–733 (2009)

    Google Scholar 

  11. K.M. Gupta, N. Sinha, B. Kumar, Physica B 406, 63–67 (2011)

    ADS  Google Scholar 

  12. D. Kalaiselvi, R. Jayavel, Appl. Phys. A 107, 93–100 (2012)

    ADS  Google Scholar 

  13. A. Kandasamy, R. Siddeswaran, P. Murugakoothan, P. Suresh Kumar, R. Mohan, Cryst. Growth. Design. 7, 183–186 (2007)

    Google Scholar 

  14. V.V. Kumari, P. Selvarajan, R. Thilagavathi, Inter. J. Adv. Sci. Tech. Res. 5, 474–491 (2012)

    Google Scholar 

  15. T.U. Devi, N. Lawrence, R.R. Babu, S. Selvanayagam, H.S. Evans, K. Ramamurthi, Cryst. Growth. Design. 9, 1370–1374 (2009)

    Google Scholar 

  16. S. Sathiskumar, T. Balakrishnan, K. Ramamurthi, S. Thamotharan, Spectrochim. Acta. Part. A 138, 187–194 (2015)

    ADS  Google Scholar 

  17. S. Sathiskumar, T. Balakrishnan, K. Ramamurthi, S. Thamotharan, Acta. Cryst. E71, 217–219 (2015)

    Google Scholar 

  18. S. Sathiskumar, T. Balakrishnan, K. Ramamurthi, S. Thamotharan, Mater. Chem. Phys. 186, 115–123 (2017)

    Google Scholar 

  19. S. Sathiskumar, T. Balakrishnan, K. Ramamurthi, S. Thamotharan, Acta. Cryst. E71, 1199–1202 (2015)

    Google Scholar 

  20. S. Sathiskumar, J. Cryst. Growth. 526, 125234 (2019)

    Google Scholar 

  21. Z. Rzaczynska, R. Mrozek, T. Glowiak, J. Chem. Crystallogr. 27, 417–422 (1997)

    Google Scholar 

  22. K. Lamberts, U. Englert, Acta Cryst. B68, 610–618 (2012)

    Google Scholar 

  23. D. Anbuselvi, J.E.M. Theras, D. Jayaraman, V. Joseph, Physica. B 423, 38–44 (2013)

    ADS  Google Scholar 

  24. N.M. Ravindra, R.P. Bharadwaj, K.S. Kumar, V.K. Srivastava, Infrared. Phys. 21, 369 (1981)

    ADS  Google Scholar 

  25. N.M. Ravindra, V.K. Srivastava, Infrared. Phys. 20, 67–69 (1980)

    ADS  Google Scholar 

  26. M. Shakir, S.K. Kushwaha, K.K. Maurya, R.C. Bhatt, Rashmi, M.A. Wahab, G. Bhagavannarayana, Mater. Chem. Phys. 120, 566–570 (2010)

    Google Scholar 

  27. G. Socrates, Infrared and Raman characteristic group frequencies (Wiley, New York, 2001)

    Google Scholar 

  28. R. Sankar, C.M. Raghavan, M. Balaji, R. Mohan Kumar, R. Jayavel, Cryst. Growth. Des. 7, 348 (2007)

    Google Scholar 

  29. R.S. Khandpur, Handbook of analytical instruments (Tata McGraw Hill Publications, 2007)

    Google Scholar 

  30. A. Ashour, N. El-Kadry, S.A. Mahmoud, Thin. Solid. Films. 269, 117–120 (1995)

    ADS  Google Scholar 

  31. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status. Solidi. B. 15, 627–637 (1966)

    ADS  Google Scholar 

  32. A.K. Chawla, D. Kaur, R. Chandra, Opt. Mater. 29, 995–998 (2007)

    ADS  Google Scholar 

  33. D.K. Schroder, Semiconductor material and device characterization (Wiley, New York, 1990)

    Google Scholar 

  34. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798–3813 (1968)

    ADS  Google Scholar 

  35. B.W. Mott, Micro indentation hardness testing (Butterworths, London, 1956)

    Google Scholar 

  36. A.A. El-Fadl, A.S. Soltan, N.M. Shaalan, Cryst. Res. Technol. 42, 364–377 (2003)

    Google Scholar 

  37. E.M. Onitsch, Mikroskopie 2, 131 (1947)

    Google Scholar 

  38. P.C. Smyth, Dielectric behavior and structure (McGraw Hill, New York, 1965)

    Google Scholar 

  39. V. Gupta, A. Mansingh, J. Appl. Phys. 80, 1063–1073 (1996)

    ADS  Google Scholar 

  40. L. Owczarek, K. Sangwal, J. Cryst. Growth 99, 827–831 (1990)

    ADS  Google Scholar 

  41. M. Rajalakshmi, R. Indirajith, M. Palanichamy, R. Gopalakrishnan, Spectrochim. Acta Part A 84, 43–50 (2011)

    ADS  Google Scholar 

  42. A.W. Bauer, W.W.M. Kirby, J.C. Sherris, M. Turck, Am. J. Clin. Pathol. 45, 493–496 (1966)

    Google Scholar 

  43. P.G. Lawrence, P.L. Harold, O.G. Francis, Antibiot. Chemother. 5, 1597 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sathiskumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathiskumar, S., Thairiyaraja, M. Investigation of physicochemical properties, photoluminescence, laser damage threshold, antimicrobial, NLO activity of L-proline manganese chloride monohydrate for optoelectronic applications. Appl. Phys. A 128, 357 (2022). https://doi.org/10.1007/s00339-022-05483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05483-3

Keywords

Navigation