Skip to main content
Log in

Microwave plasma treatment of NiCuZn ferrite nanoparticles: a novel approach of improving opto-physical and magnetic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Microwave plasma treatment of ferrite nanoparticles is a least reported method of improving the opto-physical, energy storage and magnetic properties. In this study, a sol–gel method, coupled with auto-ignition route, was adopted for the synthesis of Ni0.25Cu0.25Zn0.50 ferrite nanoparticles. Some of the samples were given low-pressure microwave plasma treatment and the corresponding opto-physical and magnetic properties were compared with the pristine NiCuZn ferrite samples. The pristine and plasma-treated samples were characterized using X-ray diffraction, field emission scanning electron microscope, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometer. Phase analysis revealed a single-phase face centered (fcc) cubic spinel structure of the prepared ferrite samples. The microwave plasma treatment enhances the average crystallite size of the ferrite samples. Surface study reflects agglomeration of the particles in the pristine samples and high porosity in the plasma-treated samples. NiCuZn ferrite possessed photoluminescence characteristics and exhibited a red emission band in the range of 646–647 nm for both pristine and plasma-treated samples. The amplitude of photoluminescence peaks increased on plasma treatment of the ferrite samples, while the energy bandgap remained unchanged. Fourier transform infrared spectroscopy revealed the presence of NO3, H–O–H, C–H, and C–O functional groups on the ferrite structure. The saturation magnetization (Ms) increased from 32.16 to 53.36 emu/g after plasma treatment of NiCuZn ferrite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Jena, D.K. Mishra, S.N. Sarangi, P. Mallick, Magnetic performance of Bi architecture α-Fe2O3/NiFe2O4 nanocomposite. J. Supercond. Novel Magn. (2022). https://doi.org/10.1007/s10948-021-06115-2

    Article  Google Scholar 

  2. X.H. Li, C.L. Xu, X.H. Han, L. Qiao, T. Wang, F.S. Li, Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition. Nanoscale Res. Lett. 5(6), 1039–1044 (2010)

    ADS  Google Scholar 

  3. S. E. Shirsath, D. Wang, S. S. Jadhav, M. L. Mane, S. Li, in Ferrites obtained by sol-gel method. Handbook of Sol-gel Science and Technology (Springer Nature Publisher, 2018), pp. 695–735

  4. A. Manikandan, M. Durka, M. Amutha Selvi, S. Arul Antony, Sesamum indicum plant extracted microwave combustion synthesis and opto-magnetic properties of spinel MnxCo1-xAl2O4 nano-catalysts. J. Nanosci. Nanotechnol. 16(1), 448–456 (2016)

    Google Scholar 

  5. E. Hema, A. Manikandan, P. Karthika, M. Durka, S.A. Arul, B.R. Venkatraman, Magneto-optical properties of reusable spinel NixMg1−xFe2O4 (0.0≤x≤1.0) nanocatalysts. J. Nanosci. Nanotechnol. 16(7), 167325–167336 (2016)

    Google Scholar 

  6. Y. Slimani, M.A. Almessiere, S. Güner, N.A. Tashkandi, A. Baykal, M.F. Sarac, I. Ercan, Calcination effect on the magneto-optical properties of vanadium substituted NiFe2O4 Nano ferrites. J. Mater. Sci.: Mater. Electron. 30(10), 9143–9154 (2019)

    Google Scholar 

  7. G. Satyanarayana, G.N. Rao, K.V. Babu, Structural, dielectric and magnetic properties of Al3+ and Cr3+ substituted Ni-Zn-Cu ferrites. J. Nanosci. Tech. 4(5), 487–491 (2018)

    Google Scholar 

  8. A. Baykal, N. Kasapoğlu, Y. Köseoğlu, M.S. Toprak, H. Bayrakdar, CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J. Alloy. Compd. 464(1–2), 514–518 (2008)

    Google Scholar 

  9. M.K. Anupama, N. Srinatha, S. Matteppanavar, B. Angadi, B. Sahoo, B. Rudraswamy, Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites. Ceram. Int. 44(5), 4946–4954 (2018)

    Google Scholar 

  10. S. Jena, D.K. Mishra, S. Mondal, S. Chakravarty, S. Hussain, P. Mallick, Effect of size, phase fraction and interface coupling on the magnetic behavior of al-modified α-Fe2O3/NiFe2O4 core–shell structure. Appl. Phys. A 127(12), 1–12 (2021)

    Google Scholar 

  11. A.A. Gaikwad, S.B. Kulkarni, Enhanced magnetic and permeability properties of Mn-substituted NiCuZn nanoparticles for ferrite core application. J. Supercond. Novel Magn. 34(9), 2405–2414 (2021)

    Google Scholar 

  12. Z. Yue, L. Li, J. Zhou, H. Zhang, Z. Ma, Z. Gui, Preparation and electromagnetic properties of ferrite–cordierite composites. Mater. Lett. 44(5), 279–283 (2000)

    Google Scholar 

  13. S. Ramesh, B.C. Sekhar, P.S. Rao, B.P. Rao, Microstructural and magnetic behavior of mixed Ni–Zn–Co and Ni–Zn–Mn ferrites. Ceram. Int. 40(6), 8729–8735 (2014)

    Google Scholar 

  14. H. Su, H. Zhang, X. Tang, B. Liu, Y. Jin, High Q-factor NiCuZn ferrite with nanocrystalline ferrite particles and Co2O3 additives. Physica Status Solidi (a) 204(2), 576–580 (2007)

    ADS  Google Scholar 

  15. S. Tankiewicz, J. Schaefer, A. DeHennis, A co-planar, near field communication telemetry link for a fully-implantable glucose sensor using high permeability ferrites. In SENSORS, 2013 IEEE (2013), pp. 1–4. IEEE.

  16. S. Yan, W. Liu, Z. Chen, Y. Nie, X. Wang, Z. Feng, Preparation and characterization of ferrite with Co substituted NiCuZn sheets application for 13.56 MHz radio frequency identification communication. J. Appl. Phys. 115(17), 17A529 (2014)

    Google Scholar 

  17. J.D. Adam, L.E. Davis, G.F. Dionne, E.F. Schloemann, S.N. Stitzer, Ferrite devices and materials. IEEE Trans. Microw. Theory Tech. 50, 721–737 (2002)

    ADS  Google Scholar 

  18. F. Ji, E.K.N. Yung, R.S. Chen, S.Q. Sheng, W.B. Dou, FDTD analysis of Y-junction Micro strip circulator with a ferrite sphere. J. Electromagn. Waves Appl. 17, 1631–1641 (2003)

    Google Scholar 

  19. M. Karami, M. Ghanbari, H.A. Alshamsi, M. Ghiyasiyan-Arani, M. Salavati-Niasari, The effect of CuI–PbI2 nanocomposite fabricated by the sonochemical route on electrochemical hydrogen storage characteristics. Int. J. Hydrogen Energy 46(36), 19074–19084 (2021)

    Google Scholar 

  20. Y. Yang, J. Li, H. Zhang, Y. Rao, G. Wang, G. Gan, Grain growth and tunable ferromagnetic resonance linewidth of low-temperature sintering NiCuZn gyromagnetic ferrites. J. Mater. Sci.: Mater. Electron. 31(4), 2845–2853 (2020)

    Google Scholar 

  21. M. Dara, M. Hassanpour, H.A. Alshamsi, M. Baladi, M. Salavati-Niasari, Green sol–gel auto combustion synthesis and characterization of double perovskite Tb 2 ZnMnO 6 nanoparticles and a brief study of photocatalytic activity. RSC Adv. 11(14), 8228–8238 (2021)

    ADS  Google Scholar 

  22. M.P. Reddy, W. Madhuri, M.V. Ramana, N.R. Reddy, K.S. Kumar, V.R.K. Murthy et al., Effect of sintering temperature on structural and magnetic properties of NiCuZn and MgCuZn ferrites. J. Magn. Magn. Mater. 322(19), 2819–2823 (2010)

    ADS  Google Scholar 

  23. F. Hcini, S. Hcini, B. Alzahrani, S. Zemni, M.L. Bouazizi, Effect of Cr substitution on structural, magnetic and impedance spectroscopic properties of Cd0.5Zn0.5Fe2−xCrxO4 ferrites. Appl. Phys. A 126(5), 1–14 (2020)

    Google Scholar 

  24. F. Liu, C. Yang, T. Ren, A.Z. Wang, J. Yu, L. Liu, NiCuZn ferrite thin films grown by a sol–gel method and rapid thermal annealing. J. Magn. Magn. Mater. 309(1), 75–79 (2007)

    ADS  Google Scholar 

  25. K. Elayakumar, A. Dinesh, A. Manikandan, M. Palanivelu, G. Kavitha, S. Prakash, A. Baykal, Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157–165 (2019)

    ADS  Google Scholar 

  26. S. Jena, D.K. Mishra, A. Soam, N. Jakhar, P. Mallick, Control growth of NiFe2O4 phase in thermal annealed α-Fe2O3/NiFe2O4 nanocomposites for the beneficial magnetic application. Appl. Phys. A 127(7), 1–18 (2021)

    Google Scholar 

  27. H. Harzali, A. Marzouki, F. Saida, A. Megriche, A. Mgaidi, Structural, magnetic and optical properties of nanosized Ni0. 4Cu0. 2Zn0. 4R0. 05Fe1. 95O4 (R= Eu3+, Sm3+, Gd3+ and Pr3+) ferrites synthesized by co-precipitation method with ultrasound irradiation. J. Magn. Magn. Mater. 460, 89–94 (2018)

    ADS  Google Scholar 

  28. S.M. Kabbur, U.R. Ghodake, R.C. Kambale, S.D. Sartale, L.P. Chikhale, S.S. Suryavanshi, Magnetic, electric and optical properties of Mg-substituted Ni-Cu-Zn ferrites. J. Electron. Mater. 46(10), 5693–5704 (2017)

    ADS  Google Scholar 

  29. Q. Luo, H. Su, X. Tang, Z. Xu, Y. Li, Y. Jing, Effects of Bi2O3 addition on power loss characteristics of low-temperature-fired NiCuZn ferrites. Ceram. Int. 44(13), 16005–16009 (2018)

    Google Scholar 

  30. A.D. Karisma, Y. Shinokawa, T. Fukasawa, T. Ishigami, K. Fukui, Synthesis of NiCuZn ferrite nanoparticles from metallic nitrate solutions using the microwave direct denitration method and evaluation of its properties. Part. Sci. Technol. 39, 427–435 (2021)

    Google Scholar 

  31. L. Minervini, R.W. Grimes, K.E. Sickafus, Disorder in pyrochlore oxides. J. Am. Ceram. Soc. 83(8), 1873–1878 (2000)

    Google Scholar 

  32. M.F. Mahmood, M.B. Hossen, Dynamics of complex impedance, dielectric and electric modulus for NiCuZn ferrites with theoretical justification. Int. Nano Lett. (2022). https://doi.org/10.1007/s40089-021-00363-9

    Article  Google Scholar 

  33. S. Yuvaraj, N. Manikandan, G. Vinitha, Investigation on the behavioral difference in third order nonlinearity and optical limiting of Mn0.55Cu0.45Fe2O4 nanoparticles annealed at different temperatures. Materi. Res. Express 4(11), 115027 (2017)

    ADS  Google Scholar 

  34. X. Wang, D. Zhang, G. Wang, L. Jin, J. Li, Y. Liao, S. Wang, Synthesis of V2O5-doped and low-sintered NiCuZn ferrite with uniform grains and enhanced magnetic properties. Ceram. Int. 46(8), 10652–10657 (2020)

    Google Scholar 

  35. R.K. Singh, A. Narayan, K. Prasad, R.S. Yadav, A.C. Pandey, A.K. Singh et al., Thermal, structural, magnetic and photoluminescence studies on cobalt ferrite nanoparticles obtained by citrate precursor method. J. Therm. Anal. Calorim. 110(2), 573–580 (2012)

    Google Scholar 

  36. M. Sharmila, S.A. Kader, D.J. Ruth, M.V.G. Babu, B. Bagyalakshmi, R.A. Kumar et al., Effect of cobalt substitution on the optical properties of bismuth ferrite thin films. Mater. Sci. Semicond. Process. 34, 109–113 (2015)

    Google Scholar 

  37. A. Manikandan, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Structural, optical and magnetic properties of Zn1−xCuxFe2O4 nanoparticles prepared by microwave combustion method. J. Mol. Struct. 1035, 332–340 (2013)

    ADS  Google Scholar 

  38. M.A. Almessiere, Y. Slimani, A.V. Trukhanov, A.D. Korkmaz, S. Guner, S. Akhtar, I. Ercan, Effect of Nd-Y co-substitution on structural, magnetic, optical and microwave properties of NiCuZn nanospinel ferrites. J. Market. Res. 9(5), 11278–11290 (2020)

    Google Scholar 

  39. A. Manikandan, J.J. Vijaya, M. Sundararajan, C. Meganathan, L.J. Kennedy, M. Bououdina, Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices Microstruct. 64, 118–131 (2013)

    ADS  Google Scholar 

  40. K.H. Wu, T.H. Ting, C.I. Liu, C.C. Yang, J.S. Hsu, Electromagnetic and microwave absorbing properties of Ni0.5Zn0.5Fe2O4/bamboo charcoal core–shell nanocomposites. Compos. Sci. Technol. 68(1), 132–139 (2008)

    Google Scholar 

  41. T. Kumar, R.K. Bajaj, On complex intuitionistic fuzzy soft sets with distance measures and entropies. J. Math. 2014, Article ID 972198 (2014). https://doi.org/10.1155/2014/972198

  42. D.C. Lingegowda, J.K. Kumar, A.D. Prasad, M. Zarei, S. Gopal, FTIR spectroscopic studies on Cleome gynandra–comparative analysis of functional group before and after extraction. Rom. J. Biophys. 22(3–4), 137–143 (2012)

    Google Scholar 

  43. J. Hu, X. Liu, X. Kan, S. Feng, C. Liu, Y. Yang, Q. Lv, Synthesis, analysis and characterization of Co substituted NiZnTi spinel ferrite. J. Alloy. Compd. 828, 154181 (2020)

    Google Scholar 

  44. Y. Wang, Y. Jing, S. Che, Y. Li, Z. Xu, X. Tang, Comparison of magnetic properties of low-temperature-fired NiCuZn ferrites under low-and high-Bi2O3 doping modes. J. Electron. Mater. 49(5), 3325–3331 (2020)

    ADS  Google Scholar 

  45. Y. Yang, H. Zhang, J. Li, F. Xu, G. Gan, D. Wen, Effects of Bi2O3-Nb2O5 additives on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrite ceramics. Ceram. Int. 44(9), 10545–10550 (2018)

    Google Scholar 

  46. A. Thakur, M. Singh, Preparation and characterization of nanosize Mn0.4Zn0.6Fe2O4 ferrite by citrate precursor method. Ceram. Int. 29(5), 505–511 (2003)

    Google Scholar 

  47. W.A. Bayoumy, M.A. Gabal, Synthesis characterization and magnetic properties of Cr-substituted NiCuZn monocrystalline ferrite. J. Alloy. Compd. 506(1), 205–209 (2010)

    Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project Number (TURSP-2020/165), Taif University, Taif, Saudi Arabia

Funding

Authors are thankful to the Taif University (Grant no. TURSP-2020/165; Mohamed M. Makhlouf) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Yasin Naz or Mohamed M. Makhlouf.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, M.A., Naz, M.Y., Shukrullah, S. et al. Microwave plasma treatment of NiCuZn ferrite nanoparticles: a novel approach of improving opto-physical and magnetic properties. Appl. Phys. A 128, 345 (2022). https://doi.org/10.1007/s00339-022-05480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05480-6

Keywords

Navigation