Skip to main content

Advertisement

Log in

Physico-chemical behavior and microstructural manipulation of nanocomposites containing hydroxyapatite, alumina, and graphene oxide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ternary nanocomposites based on hydroxyapatite (HAP) and alumina (Al2O3) were embedded through graphene oxide (GO) nanosheets to be investigated for medical applications. The composition of the preparations has been confirmed by X-ray photoelectron spectroscopy, energy-dispersive X-ray analysis, and Fourier-Transform infrared spectroscopy. Scanning and transmission electron microscopy have shown the typical morphologies of the components of the nanocomposites with hydroxyapatite nanorods reaching an average diameter of 22.26 ± 2 nm and an average length of 69.56 ± 19.25 nm in the ternary nanocomposites. The ternary nanocomposite has a microhardness of 5.8 ± 0.1 GPa and a higher average roughness of 6.5 nm compared to pure HAP preparation with an average roughness of 2.7 nm. All preparations have shown an acceptable cytotoxicity profile with a percent osteoblasts cell viability of 98.6 ± 1.3% after culturing with the ternary nanocomposite. The TNC has also shown the highest antibacterial activity compared to preparations of each of its constituents and their nanocomposites, with a zone of inhibition’s diameter of 14.1 ± 0.8 mm and 13.6 ± 0.6 mm against Staphylococcus aureus and Escherichia coli, respectively, compared to no zone of inhibition for the pure hydroxyapatite preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Özer, K.E. Öksüz, The effect of yttrium oxide in hydroxyapatite/aluminum oxide hybrid biocomposite materials: phase, mechanical and morphological evaluation. Materialwiss. Werkstofftech. 50, 1382–1390 (2019)

    Article  Google Scholar 

  2. R. Rial, M. Gonzalez-Durruthy, Z. Liu, J.M. Ruso, Advanced materials based on nanosized hydroxyapatite. Molecules 26, 1–22 (2021)

    Article  Google Scholar 

  3. Lin K, Chang J. Structure and properties of hydroxyapatite for biomedical applications. 2015:3–19.

  4. S. Dorozhkin, Calcium orthophosphate cements and concretes. Materials 2, 221–291 (2009)

    Article  ADS  Google Scholar 

  5. S. Dorozhkin, Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering. Biol. Med. Mater. 2, 1975–2045 (2009)

    Google Scholar 

  6. L. Xia, K. Lin, X. Jiang, Y. Xu, M. Zhang, J. Chang et al., Enhanced osteogenesis through nano-structured surface design of macroporous hydroxyapatite bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways. J. Mater. Chem. B 1, 5403–5416 (2013)

    Article  Google Scholar 

  7. M. Li, P. Xiong, F. Yan, S. Li, C. Ren, Z. Yin et al., An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioact. Mater. 3, 1–18 (2018)

    Article  ADS  Google Scholar 

  8. Y. Bozkurta, H. Gokceb, S. Pazarliogluc, S. Salmand, The effect of yttrium oxide reinforcement on the microstructural and mechanical properties of biologically derived hydroxyapatite. Acta. Phys. Pol. A. 127, 1403–1406 (2015)

    Article  ADS  Google Scholar 

  9. S. Vignesh Raj, M. Rajkumar, N. Meenakshi Sundaram, A. Kandaswamy, Synthesis and characterization of hydroxyapatite/alumina ceramic nanocomposites for biomedical applications. Bull. Mater. Sci. 41, 1–8 (2018)

    Article  Google Scholar 

  10. A. Chiba, S. Kimura, K. Raghukandan, Y. Morizono, Effect of alumina addition on hydroxyapatite biocomposites fabricated by underwater-shock compaction. Mater. Sci. Eng. A 350, 179–183 (2003)

    Article  Google Scholar 

  11. S. Ramesh, A.N. Natasha, C.Y. Tan, L.T. Bang, A. Niakan, J. Purbolaksono et al., Characteristics and properties of hydoxyapatite derived by sol–gel and wet chemical precipitation methods. Ceram. Int. 41, 10434–10441 (2015)

    Article  Google Scholar 

  12. Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4, 3833–3842 (2012)

    Article  ADS  Google Scholar 

  13. H.H. Yoon, S.H. Bhang, T. Kim, T. Yu, T. Hyeon, B.-S. Kim, Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell-adhesion substrate and growth factor-delivery carrier. Adv. Func. Mater. 24, 6455–6464 (2014)

    Article  Google Scholar 

  14. S.W. Crowder, D. Prasai, R. Rath, D.A. Balikov, H. Bae, K.I. Bolotin et al., Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5, 4171–4176 (2013)

    Article  ADS  Google Scholar 

  15. M.K. Ahmed, M.E. El-Naggar, A. Aldalbahi, M.H. El-Newehy, A.A. Menazea, Methylene blue degradation under visible light of metallic nanoparticles scattered into graphene oxide using laser ablation technique in aqueous solutions. J. Mol. Liq. 315, 113794 (2020)

    Article  Google Scholar 

  16. Jackson AG. Handbook of crystallography: for electron microscopists and others: Springer Science & Business Media; 2012.

  17. R.J. Gaboriaud, F. Paumier, B. Lacroix, Disorder–order phase transformation in a fluorite-related oxide thin film: In-situ X-ray diffraction and modelling of the residual stress effects. Thin Solid Films 601, 84–88 (2016)

    Article  ADS  Google Scholar 

  18. A.S. Brown, M.A. Spackman, R.J. Hill, The electron distribution in corundum. A study of the utility of merging single-crystal and powder diffraction data. Acta Crystallographica Section A 49, 513–527 (1993)

    Article  Google Scholar 

  19. H. El-Hamshary, M.E. El-Naggar, A. El-Faham, M.A. Abu-Saied, M.K. Ahmed, M. Al-Sahly, Preparation and characterization of nanofibrous scaffolds of Ag/vanadate hydroxyapatite encapsulated into polycaprolactone: morphology, mechanical, and in vitro cells adhesion. Polymers (Basel) 13, 1327–1346 (2021)

    Article  Google Scholar 

  20. S.F. Mansour, S.I. El-dek, M. Ismail, M.K. Ahmed, Structure and cell viability of Pd substituted hydroxyapatite nano particles. Biomed. Phys. Eng. Express 4, 045008 (2018)

    Article  Google Scholar 

  21. Abdelbar MF, El-Sheshtawy HS, Shoueir KR, El-Mehasseb I, Ebeid E-Zeiny M, El-Kemary M. Halogen bond triggered aggregation induced emission in an iodinated cyanine dye for ultra sensitive detection of Ag nanoparticles in tap water and agricultural wastewater. RSC Advances 2018;8:24617-24626

  22. M.A. Zakria, A.A. Menazea, A.M. Mostafa, E.A. Al-Ashkar, Ultra-thin silver nanoparticles film prepared via pulsed laser deposition: synthesis, characterization, and its catalytic activity on reduction of 4-nitrophenol. Surf. Interf. 19, 100438 (2020)

    Article  Google Scholar 

  23. A.A. Menazea, S.A. Abdelbadie, M.K. Ahmed, Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε-polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications. Appl. Surf. Sci. 508, 145299 (2020)

    Article  Google Scholar 

  24. S.J. Kalita, H.A. Bhatt, Nanocrystalline hydroxyapatite doped with magnesium and zinc: synthesis and characterization. Mater. Sci. Eng. C 27, 837–848 (2007)

    Article  Google Scholar 

  25. Sinclair C, Birch HL, Smith RKW, Goodship AE. 8—skeletal physiology: responses to exercise and training. In: Hinchcliff KW, Kaneps AJ, Geor RJ (eds) Equine Sports Medicine and Surgery (Second Edition): W.B. Saunders; 2014. p. 145–65.

  26. G. Ma, X.Y. Liu, Hydroxyapatite: hexagonal or monoclinic? Cryst. Growth Des. 9, 2991–2994 (2009)

    Article  Google Scholar 

  27. R. Prins, On the structure of γ-Al2O3. J. Catal. 392, 336–346 (2020)

    Article  Google Scholar 

  28. T. Ungár, Microstructural parameters from X-ray diffraction peak broadening. Scripta Mater. 51, 777–781 (2004)

    Article  Google Scholar 

  29. D. Gopi, D. Rajeswari, S. Ramya, M. Sekar, R. Pramod, J. Dwivedi et al., Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel. Appl. Surf. Sci. 286, 83–90 (2013)

    Article  ADS  Google Scholar 

  30. M.J. Lukić, L. Veselinović, M. Stevanović, J. Nunić, G. Dražič, S. Marković et al., Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Mater. Lett. 122, 296–300 (2014)

    Article  Google Scholar 

  31. A. Janković, S. Eraković, M. Mitrić, I.Z. Matić, Z.D. Juranić, G.C.P. Tsui et al., Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J. Alloy. Compd. 624, 148–157 (2015)

    Article  Google Scholar 

  32. M.K. Ahmed, R. Ramadan, S.I. El-dek, V. Uskoković, Complex relationship between alumina and selenium-doped carbonated hydroxyapatite as the ceramic additives to electrospun polycaprolactone scaffolds for tissue engineering applications. J. Alloy. Compd. 801, 70–81 (2019)

    Article  Google Scholar 

  33. V.K. Mishra, B.N. Bhattacharjee, O. Parkash, D. Kumar, S.B. Rai, Mg-doped hydroxyapatite nanoplates for biomedical applications: a surfactant assisted microwave synthesis and spectroscopic investigations. J. Alloy. Compd. 614, 283–288 (2014)

    Article  Google Scholar 

  34. S.F. Mansour, S.I. El-Dek, M.K. Ahmed, Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci. Rep. 7, 43202 (2017)

    Article  ADS  Google Scholar 

  35. C.S. Aalam, C.G. Saravanan, M. Kannan, Experimental investigations on a CRDI system assisted diesel engine fuelled with aluminium oxide nanoparticles blended biodiesel. Alex. Eng. J. 54, 351–358 (2015)

    Article  Google Scholar 

  36. S. Hiromoto, M. Inoue, T. Taguchi, M. Yamane, N. Ohtsu, In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomater. 11, 520–530 (2015)

    Article  Google Scholar 

  37. O. Kaygili, C. Tatar, F. Yakuphanoglu, S. Keser, Nano-crystalline aluminum-containing hydroxyapatite based bioceramics: synthesis and characterization. J. Sol-Gel. Sci. Technol. 65, 105–111 (2012)

    Article  Google Scholar 

  38. O. Kaygili, S. Keser, N. Bulut, T. Ates, Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Physica B 537, 63–67 (2018)

    Article  ADS  Google Scholar 

  39. A. Kruk, A. Wajler, M. Bobruk, A. Adamczyk, M. Mrózek, W. Gawlik et al., Preparation of yttria powders co-doped with Nd3+, and La3+ using EDTA gel processes for application in transparent ceramics. J. Eur. Ceram. Soc. 37, 4129–4140 (2017)

    Article  Google Scholar 

  40. K. Lin, Y. Zhou, Y. Zhou, H. Qu, F. Chen, Y. Zhu et al., Biomimetic hydroxyapatite porous microspheres with co-substituted essential trace elements: surfactant-free hydrothermal synthesis, enhanced degradation and drug release. J. Mater. Chem. 21, 16558 (2011)

    Article  Google Scholar 

  41. Surekha G, Krishnaiah KV, Ravi N, Suvarna RP. FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. J Phys. IOP Publishing; 2020. p. 012012.

  42. D.J. Morgan, Comments on the XPS analysis of carbon materials. C 7, 51 (2021)

    Google Scholar 

  43. L. Chen, Z. Xu, J. Li, B. Zhou, M. Shan, Y. Li et al., Modifying graphite oxide nanostructures in various media by high-energy irradiation. RSC Adv 4, 1025–1031 (2014)

    Article  ADS  Google Scholar 

  44. H. Donya, R. Darwesh, M. Ahmed, Morphological features and mechanical properties of nanofibers scaffolds of polylactic acid modified with hydroxyapatite/CdSe for wound healing applications. Int. J. Biol. Macromol. 186, 897–908 (2021)

    Article  Google Scholar 

  45. C.C. Negrila, M.V. Predoi, S.L. Iconaru, D. Predoi, Development of zinc-doped hydroxyapatite by sol–gel method for medical applications. Molecules 23, 2986–3001 (2018)

    Article  Google Scholar 

  46. S.-L. Iconaru, M. Motelica-Heino, D. Predoi, Study on Europium-doped hydroxyapatite nanoparticles by Fourier Transform infrared spectroscopy and their antimicrobial properties. J. Spectrosc. 2013, 1–10 (2013)

    Article  Google Scholar 

  47. K. Djebaili, Z. Mekhalif, A. Boumaza, A. Djelloul, XPS, FTIR, EDX, and XRD analysis of Al2O3 scales grown on PM2000 alloy. J. Spectrosc. 2015, 1–16 (2015)

    Article  Google Scholar 

  48. H. Donya, R. Darwesh, M.K. Ahmed, Morphological features and mechanical properties of nanofibers scaffolds of polylactic acid modified with hydroxyapatite/CdSe for wound healing applications. Int. J. Biol. Macromol. 186, 897–908 (2021)

    Article  Google Scholar 

  49. R. Barabás, M. Czikó, I. Dékány, L. Bizo, E. Bogya, Comparative study of particle size analysis of hydroxyapatite-based nanomaterials. Chem. 67, 1414–1423 (2013)

    Google Scholar 

  50. H. Nosrati, R.S. Mamoory, D.Q.S. Le, C.E. Bünger, Preparation of reduced graphene oxide/hydroxyapatite nanocomposite and evaluation of graphene sheets/hydroxyapatite interface. Diam. Relat. Mater. 100, 107561 (2019)

    Article  ADS  Google Scholar 

  51. S.F. Mansour, S.I. El-dek, S.V. Dorozhkin, M.K. Ahmed, Physico-mechanical properties of Mg and Ag doped hydroxyapatite/chitosan biocomposites. New J. Chem. 41, 13773–13783 (2017)

    Article  Google Scholar 

  52. T. Groth, P. Falck, R.-R. Miethke, Cytotoxicity of biomaterials—basic mechanisms and in vitro test methods: a review. Altern. Lab. Anim. 23, 790–799 (2020)

    Article  Google Scholar 

  53. Standardization IOf. Biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity (ISO 10993–5:2009). 2009.

  54. Horváth G, Bencsik T, Ács K, Kocsis B. Chapter 12—sensitivity of ESBL-producing gram-negative bacteria to essential oils, plant extracts, and their isolated compounds. In: Kon K, Rai M, (eds) Antibiotic resistance: Academic Press; 2016. p. 239–69.

  55. D. Ege, A.R. Kamali, A.R. Boccaccini, Graphene oxide/polymer-based biomaterials. Adv. Eng. Mater. 19, 1700627 (2017)

    Article  Google Scholar 

  56. I.M. Sadiq, B. Chowdhury, N. Chandrasekaran, A. Mukherjee, Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine 5, 282–286 (2009)

    Article  Google Scholar 

  57. S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang et al., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011)

    Article  Google Scholar 

  58. H.A. Radwan, R.A. Ismail, S.A. Abdelaal, B.A. Al Jahdaly, A. Almahri, M.K. Ahmed et al., Electrospun polycaprolactone nanofibrous webs containing Cu–magnetite/graphene oxide for cell viability, antibacterial performance, and dye decolorization from aqueous solutions. Arab. J. Sci. Eng. 47, 303–318 (2021)

    Article  Google Scholar 

  59. M.E. El-Naggar, O.A.A. Ali, D.I. Saleh, M.A. Abu-Saied, M.K. Ahmed, E. Abdel-Fattah et al., Nanoarchitectonics of hydroxyapatite/molybdenum trioxide/graphene oxide composite for efficient antibacterial activity. J. Inorg. Organomet. Polym. Mater. 32, 399 (2021)

    Article  Google Scholar 

  60. C. Shuai, W. Guo, P. Wu, W. Yang, S. Hu, Y. Xia et al., A graphene oxide-Ag co-dispersing nanosystem: dual synergistic effects on antibacterial activities and mechanical properties of polymer scaffolds. Chem. Eng. J. 347, 322–333 (2018)

    Article  Google Scholar 

  61. F. Kiani, N.A. Astani, R. Rahighi, A. Tayyebi, M. Tayebi, J. Khezri et al., Effect of graphene oxide nanosheets on visible light-assisted antibacterial activity of vertically-aligned copper oxide nanowire arrays. J. Colloid Interface Sci. 521, 119–131 (2018)

    Article  ADS  Google Scholar 

  62. R. Al-Wafi, S.F. Mansour, M.S. AlHammad, M.K. Ahmed, Biological response, antibacterial properties of ZrO2/hydroxyapatite/graphene oxide encapsulated into nanofibrous scaffolds of polylactic acid for wound healing applications. Int. J. Pharmaceut. 601, 120517 (2021)

    Article  Google Scholar 

  63. A.A. Menazea, M.K. Ahmed, Synthesis and antibacterial activity of graphene oxide decorated by silver and copper oxide nanoparticles. J. Mol. Struct. 1218, 128536 (2020)

    Article  Google Scholar 

  64. K. Broniszewski, J. Wozniak, M. Kostecki, A. Olszyna, Properties of alumina—graphene oxide composites. Mater. Today 2, 370–375 (2015)

    Google Scholar 

  65. H. Nosrati, R. Sarraf-Mamoory, M.H. Kazemi, M. Canillas Perez, M. Shokrollahi, R. Zolfaghari Emameh et al., Characterization of hydroxyapatite-reduced graphene oxide nanocomposites consolidated via high frequency induction heat sintering method. J. Asian Ceram. Soc. 8, 1296–1309 (2020)

    Article  Google Scholar 

  66. A.E. Hannora, Preparation and characterization of hydroxyapatite/alumina nanocomposites by high-energy vibratory ball milling. J Ceram Sci Tech 5, 293–298 (2014)

    Google Scholar 

  67. Dall’Ara E, Öhman C, Baleani M, Viceconti M. The effect of tissue condition and applied load on Vickers hardness of human trabecular bone. Journal of Biomechanics 2007;40:3267-3270

  68. W.-W. Wu, Y.-B. Zhu, W. Chen, S. Li, B. Yin, J.-Z. Wang et al., Bone hardness of different anatomical regions of human radius and its impact on the pullout strength of screws. Orthop Surg 11, 270–276 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manal M. Alkhamisi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almotiri, R.A., Alkhamisi, M.M. Physico-chemical behavior and microstructural manipulation of nanocomposites containing hydroxyapatite, alumina, and graphene oxide. Appl. Phys. A 128, 351 (2022). https://doi.org/10.1007/s00339-022-05479-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05479-z

Keywords

Navigation