Skip to main content
Log in

Highly sensitive detection of kinetin with electrochemical exfoliation of graphene nanosheets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we developed an efficient electrochemical exfoliation strategy for the preparation of graphene (eGr) nanosheets. Newly designed nanosheets-like eGr/GCE electrode possessed large specific surface area, low defect and good electrical conductivity, which facilitates the preconcentration of Kinetin (KT) onto the electrode surface. It exhibits a linear range extending from 0.5 to 100 µM and the lowest detection limit at 0.15 µM. The KT oxidation on eGr is an adsorption-controlled process, which involves a total of 4 H+ and 4 e in the transferring processes. Moreover, there were no significant interfering substances among inorganics (NO3−, Cu2+, K+, PO43−, SO42−, Na+, Cl), quercetin, rutin, luteolin, luteoloside, naphthylacetic acid, 2,4-dichlorophenoxyacetic acid and indole-3-acetic acid. The recoveries are in the range of 89.6–117.43% with a relative and deviation (RSD) < 4% (n = 3) for KT detection in lettuce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Zhao, A. Yaschenko, J.M. Alonso, A.N. Stepanova, Leveraging synthetic biology approaches in plant hormone research. Curr. Opin. Plant. Biol. 60, 101998 (2021)

    Article  Google Scholar 

  2. J.J. Kieber, G.E. Schaller, Cytokinin signaling in plant development. Development 145, 1–7 (2018)

    Article  Google Scholar 

  3. A. Kadlecováa, B. Makováa, M. Artal-Sanzc, M. Strnada, J. Voller, The plant hormone kinetin in disease therapy and healthy aging. Ageing. Res. Rev. 55, 100958 (2019)

    Article  Google Scholar 

  4. N. Khan, A.M.D. Bano, A. Babar, Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS ONE 15, 1–32 (2020)

    Google Scholar 

  5. R. Amasino, 1955: Kinetin arrives. the 50th anniversary of a new plant hormone. Plant. Physiol. 138, 1177–1184 (2005)

    Article  Google Scholar 

  6. Z. Zhang, J. Peng, S. Li, H. Peng, X. Wang, D. Long, J. Chen, H. Xian, R. Ni, Simultaneous determination of cytokinins by high performance liquid chromatography with resonance Rayleigh scattering and mechanism discussion. Analyst. 144, 5186–5192 (2019)

    Article  ADS  Google Scholar 

  7. C.H. Hocart, J. Badenoch-Jones, C.W. Parker, D.S. Letham, R.E. Summons, Cytokinins of dry zea mays seed: quantification by radioimmunoassay and gas chromatography-mass spectrometry. J Plant. Groeth. Regul. 7, 179–196 (1988)

    Article  Google Scholar 

  8. W. Zhang, L. He, R. Zhang, S. Guo, H. Yue, X. Ning, Y. Tan, Q. Li, B. Wang, Development of a monoclonal antibody-based enzyme-linked immunosorbent assay for the analysis of 6-benzylaminopurine and its ribose adduct in bean sprouts. Food. Chem. 207, 233–238 (2016)

    Article  Google Scholar 

  9. Y. Wu, P. Deng, Y. Tian, J. Feng, J. Xiao, J. Li, J. Liu, G. Li, Q. He, Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite. J Nanobiotechnology. 112, 1–13 (2020)

    Google Scholar 

  10. Y. Zhao, J. Zhou, Z. Jia, D. Huo, Q. Liu, D. Zhong, Y. Hu, M. Yang, M. Bian, C. Hou, In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim. Acta. 186, 1–10 (2019)

    ADS  Google Scholar 

  11. W. Wu, H. Min, H. Wu, Y. Ding, S. Yang, Electrochemical determination of uric acid using a multiwalled carbon nanotube platinum–nickel alloy glassy carbon electrode. Anal. Lett. 50, 91–104 (2017)

    Article  Google Scholar 

  12. H.Y. Jin, C.X. Guo, X. Liu, J.L. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118(13), 6337–6408 (2018)

    Article  Google Scholar 

  13. M.A.A. Mohd Abdah, M. Mokhtar, L.T. Khoon, K. Sopian, N.A. Dzulkurnain, A. Ahmad, Y. Sulaiman, F. Bella, M. S. Su’ait., Synthesis and electrochemical characterizations of poly 3,4-ethylenedioxythiophene/manganese oxide coated on porous carbon nanofibers as a potential anode for lithium-ion batteries. Energy. Rep. 7, 8677–8687 (2021)

    Article  Google Scholar 

  14. L.J. Kou, Y. Wang, J.J. Song, Reduced graphene oxide nanosheets decorated carbon-coated NH4V3O8 as cathode materials with superior cycle stabilities for lithium-ion batteries. Appl. Phys. A. 128, 14 (2022)

    Article  ADS  Google Scholar 

  15. C.S. Kim, J.S. Lee, R. Saroha, Y.B. Park, Y.C. Kang, D.W. Kang, S.M. Jeong, J.S. Cho, Porous nitrogen-doped graphene nanofibers comprising metal organic framework-derived hollow and ultrafine layered double metal oxide nanocrystals as high-performance anodes for lithium-ion batteries. J. Power. Sources. 523, 231030 (2022)

    Article  Google Scholar 

  16. J. Amici, C. Torchio, D. Versaci, D. Dessantis, A. Marchisio, F. Caldera, F. Bella, C. Francia, S. Bodoardo, Nanosponge-based composite gel polymer electrolyte for safer Li-O2 batteries. Polymers 13(10), 1625 (2021)

    Article  Google Scholar 

  17. F. Bella, S.D. Luca, L. Fagiolari, D. Versaci, J. Amici, C. Francia, S. Bodoardo, An overview on anodes for magnesium batteries: challenges towards a promising storage solution for renewables. Nanomaterials 11(3), 810 (2021)

    Article  Google Scholar 

  18. K.Y. Hwa, A. Santhan, T.S.K. Sharma, One-dimensional self-assembled Co2SnO4 nanosphere to nanocubes intertwined in two-dimensional reduced graphene oxide: an intriguing electrocatalytic sensor toward mesalamine detection. Mater. Today. Chem. 23, 100739 (2022)

    Article  Google Scholar 

  19. M. Lu, C.Y. Cao, F. Wang, G.C. Liu, A polyethyleneimine reduced graphene oxide/gold nanocubes based electrochemical aptasensor for chloramphenicol detection using single-stranded DNA-binding protein. Mater. Des. 199, 109409 (2021)

    Article  Google Scholar 

  20. W.B. Liu, G.C. Chai, J. Zhang, M.G. Wang, Y.X. Dai, Q. Yang, Preparation of Cu2O nanocubes with different sizes and rough surfaces by a seed-mediated self-assembly process and their application as a non-enzymatic glucose sensor. New J. Chem. 44, 15662–15670 (2020)

    Article  Google Scholar 

  21. M.B. Jaballah, N.B. Messaoud, C. Dridi, Nanoengineering of new cost-effective nanosensor based on functionalized MWCNT and Ag nanoparticles for sensitive detection of BPA in drinking water. Appl. Phys. A 127, 713 (2021)

    Article  ADS  Google Scholar 

  22. M.A. Khan, R. Govindasamy, A. Ahmad, M.R. Siddiqui, S.A. Alshareef, A.A.H. Hakami, M. Rafatullah, Carbon based polymeric nanocomposites for dye adsorption: synthesis, characterization, and application. Polymers 13(3), 419 (2021)

    Article  Google Scholar 

  23. L. Lavagna, G. Syrrokostas, L. Fagiolari, J. Amici, C. Francia, S. Bodoardo, G. Leftheriotis, F. Bella, Platinum-free photoelectrochromic devices working with copper-based electrolytes for ultrastable smart windows. J. Mater. Chem. A 9, 19687–19691 (2021)

    Article  Google Scholar 

  24. S. Wang, W. Gao, X.Y. Hu, Y.Z. Shen, L. Wang, Supramolecular strategy for smart windows. Chem. Commun. 55, 4137–4149 (2019)

    Article  Google Scholar 

  25. C.L. Hu, J. Qu, Y. Xiao, S.L. Zhao, H. Chen, L.M. Dai, Carbon nanomaterials for energy and biorelated catalysis: recent advances and looking forward. ACS. Cent. Sci. 5, 389–408 (2019)

    Article  Google Scholar 

  26. X.H. Kang, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y.H. Lin, A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81, 754–759 (2010)

    Article  Google Scholar 

  27. P.D.P. Swetha, H. Manisha, K. Sudhakaraprasad, Graphene and graphene-based materials in biomedical science. Part. Part. Syst. Charact. 35, 1800105 (2018)

    Article  Google Scholar 

  28. R. Ye, J.M. Tour, Graphene at fifteen. ASC. NANO 13, 10872–10878 (2019)

    Google Scholar 

  29. S. Kesavan, N.S.K. Gowthaman, S. Alwarappan, S.A. John, Real time detection of adenosine and theophylline in urine and blood samples using graphene modified electrode. Sensors. Actuators. B. Chem. 278, 46–54 (2019)

    Article  Google Scholar 

  30. S. Alimohammadi, M.A. Kiani, M. Imani, H. Rafii-tabar, P. Sasanpour, Electrochemical determination of dexamethasone by graphene modified electrode: experimental and theoretical investigations. Sci. Rep. 9, 11775 (2019)

    Article  ADS  Google Scholar 

  31. V.K. Anand, A. Bukke, K. Bhatt, S. Kumar, S. Sharma, R. Goyal, G.S. Virdi, Highly sensitive and reusable Cu+2/polyaniline/reduced graphene oxide nanocomposite ink-based non-enzymatic glucose sensor. Appl. Phys. A. 126, 500 (2020)

    Article  ADS  Google Scholar 

  32. C. Su, Y. Luang, C. Wu, Y. Li, K. Liu, W. Zhang, S. Lin, Z. Juang, Y. Zhong, F. Chen, L. Li, Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano. Lett. 11, 3612–3616 (2011)

    Article  ADS  Google Scholar 

  33. B. Sun, J. Pang, Q. Cheng, S. Zhang, Y. Li, C. Zhang, D. Sun, B. Ibarlucea, Y. Li, D. Chen, H. Fan, Q. Han, M. Chao, H. Liu, J. Wang, G. Cuniberti, L. Han, W. Zhou, Synthesis of wafer-scale graphene with chemical vapor deposition for electronic device applications. Adv. Mater. Technol. 6, 2000744 (2021)

    Article  Google Scholar 

  34. R.K. Singh, R. Kumar, D.P. Singh, Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC. Adv. 6, 64993–65011 (2016)

    Article  ADS  Google Scholar 

  35. S.J. Kim, Y. Song, M.J. Heller, Seamless aqueous arc discharge process for producing graphitic carbon nanostructures. Carbon 120, 83–88 (2017)

    Article  Google Scholar 

  36. H. Huang, W. Chen, S. Chen, A.T.S. Wee, Bottom-up growth of epitaxial graphene on 6H-SiC (0001). ACS Nano 2, 2513–2518 (2008)

    Article  Google Scholar 

  37. K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014)

    Article  Google Scholar 

  38. C.Y. Su, A.Y. Lu, Y.P. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5, 2332–2339 (2011)

    Article  Google Scholar 

  39. P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong, Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid. Interface Sci. 20, 329–338 (2015)

    Article  Google Scholar 

  40. S. Wang, C. Wang, X. Ji, Towards understanding the salt-intercalation exfoliation of graphite into graphene. RSC Adv. 7, 52252–52260 (2017)

    Article  ADS  Google Scholar 

  41. Q. Zhou, Y. Lu, H. Xu, High-yield production of high-quality graphene by novel electrochemical exfoliation at air-electrolyte interface. Mater. Lett. 235, 153–156 (2019)

    Article  Google Scholar 

  42. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010)

    Article  ADS  Google Scholar 

  43. Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T.F. Chung, P. Peng, N.P. Guisinger, E.A. Stach, J. Bao, S. Pei, Y.P. Chen, Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011)

    Article  ADS  Google Scholar 

  44. S.S. Sukumaran, S. Tripathi, A.N. Resmi, K.G. Gopchandran, K.B. Jinesh, Influence of surfactants on the electronic properties of liquid-phase exfoliated graphene. Mater. Sci. Eng. B. 240, 62–68 (2019)

    Article  Google Scholar 

  45. L. Buglione, E.L.K. Chng, A. Ambrosi, Z. Sofer, M. PumeraM, Graphene materials preparation methods have dramatic influence upon their capacitance. Electrochem. Commun. 14, 5–8 (2011)

    Article  Google Scholar 

  46. Z. Hou, Y. Jin, X. Xi, T. Huang, D. Wu, P. Xu, R. Liu, Hierarchically porous nitrogen-doped graphene aerogels as efficient metal-free oxygen reduction catalysts. J. Colloid. Interface Sci. 488, 317–321 (2017)

    Article  ADS  Google Scholar 

  47. R. Su, D. Wang, M. Liu, J. Yan, J.X. Wang, Q. Zhan, Y. Pu, N.R. Foster, J.F. Chen, Subgram-scale synthesis of biomass waste-derived fluorescent carbon dots in subcritical water for bioimaging, sensing, and solid-state patterning. ACS Omega 3, 13211–13218 (2018)

    Article  Google Scholar 

  48. H. Ding, S.B. Yu, J.S. Wei, H.M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10, 484–491 (2015)

    Article  Google Scholar 

  49. M.I. Saidin, I.M. Isa, M. Ahmad, N. Hashim, S. Ghani, Analysis of trace nickel by square wave stripping voltammetry using chloropalladium(II) complex-modified MWCNTs paste electrode. Sensors. Actuators. B Chem. 240, 848–856 (2016)

    Article  Google Scholar 

  50. H. Wan, Q. Zou, R. Yan, F. Zhao, B. Zeng, Electrochemistry and voltammetric determination of tannic acid on a single-wall carbon nanotube-coated glassy carbon electrode. Microchim. Acta. 159, 109–115 (2007)

    Article  Google Scholar 

  51. Y. Yardim, Z. Şentürk, Voltammetric behavior of indole-3-acetic acid and kinetin at pencil-lead graphite electrode and their simultaneous determination in the presence of anionic surfactant. Turk. J. Chem. 35, 413–426 (2011)

    Google Scholar 

  52. Y. Ballesteros, M.J. Huebra, M.C. Quintana, P. Hernandez, L. Hernandez, Voltamperometric determination of kinetin with a carbon paste modified electrode. Microchem. J. 74, 193–202 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51801039, 81860701, 82060714), Natural Science Foundation of Guizhou Province, China (NO. ZK [2021]242).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haijun Du or Yang Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ai, J., Hu, H. et al. Highly sensitive detection of kinetin with electrochemical exfoliation of graphene nanosheets. Appl. Phys. A 128, 350 (2022). https://doi.org/10.1007/s00339-022-05471-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05471-7

Keywords

Navigation