Skip to main content
Log in

Magnetic properties of exchange-biased FeCo/CoO bilayer and its electronic structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetic and structural properties of FeCo/CoO bilayer prepared by ion beam sputtering on silicon substrate have been studied. As-deposited specimen exhibits exchange bias at 10 K. The influence of thermal annealing and swift heavy ion on the exchange bias field has been studied. Thermal annealing enhances the value of exchange bias field (HEB) as well as magnetic moment of the bilayer; revealing that the exchange bias value is tailored by the thermal annealing and depends upon annealing temperature. X-ray diffraction gives convincing support of the phase formation of Co3O4 in the CoO layer after thermal annealing. A correlation has been observed between soft X-ray absorption and the corresponding magnetic characteristics. The exchange bias effect exists up to temperatures beyond the ordering temperature of the Cobalt oxide layer. Upto the 6 × 1013 ions/cm2of 100 MeV Au-ion irradiation does not change the magnetization behaviour of the FeCo/CoO system. Higher ion fluence of 1 × 1014 Au-ions/cm2, reduces the HEBvalue. Thermal annealing enhances the HEB value. From the soft X-ray absorption, it reveals that the reduction in the HEB value for the ion-irradiated specimen is due to defects present in the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)

    Article  ADS  Google Scholar 

  2. A.E. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200, 552 (1999)

    Article  ADS  Google Scholar 

  3. J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Phy. Rep. 422, 65 (2005)

    Article  ADS  Google Scholar 

  4. K. O’Grady, L.E. Fernandez-Outon, G. Vallejo-Fernandez, J. Magn. Magn. Mater. 322, 883 (2010)

    Article  ADS  Google Scholar 

  5. R.L. Stamps, J. Phys. D 33, R247 (2000)

    Article  ADS  Google Scholar 

  6. R. Mohan, M. Prasad Ghosh, R.K. Choubey, S. Mukherjee, J. Mater. Sci. Mater. Electron. 30, 11748 (2019)

    Article  Google Scholar 

  7. M.D. Stiles, R.D. McMichael, Phys. Rev. B 59, 3722 (1999)

    Article  ADS  Google Scholar 

  8. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Phys. Rep. 422, 65 (2005)

    Article  ADS  Google Scholar 

  9. B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Wilhoit, D. Mauri, Phys. Rev. B 43, 1297 (1991)

    Article  ADS  Google Scholar 

  10. B.A. Gurney, V.S. Speriosu, D.R. Wilhoit, H. Lefakis, R.E. Fontana Jr., D.E. Heim, M. Dovek, J. Appl. Phys. 81, 3998 (1997)

    Article  ADS  Google Scholar 

  11. J.R. Childress, R.E. Fontana, C. R. Phys. 6, 997 (2005)

    Article  ADS  Google Scholar 

  12. O.G. Heinonen, E.W. Singleton, B.W. Karr, Z. Gao, H.S. Cho, Y. Chen, IEEE Trans. Magn. 44, 2465 (2008)

    Article  ADS  Google Scholar 

  13. J.C.S. Kools, IEEE Trans. Magn. 32, 3165 (1996)

    Article  ADS  Google Scholar 

  14. S.S.P. Parkin et al., J. Appl. Phys. 85, 5828 (1999)

    Article  ADS  Google Scholar 

  15. S. Tehrani, B. Engel, J.M. Slaughter, E. Chen, M. De Herrera, M. Durlam, P. Naji, R. Whig, J. Janesky, J. Calder, IEEE Trans. Magn. 36, 2752 (2000)

    Article  ADS  Google Scholar 

  16. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956)

    Article  ADS  Google Scholar 

  17. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogues, Nature (London) 423, 850 (2003)

    Article  ADS  Google Scholar 

  18. C.-H.T. Chang, S.C. Chang, J.S. Tsay, Y.D. Yao, Appl. Surf. Sci. 405, 316 (2017)

    Article  ADS  Google Scholar 

  19. M. Ali, P. Adie, C.H. Marrows, D. Greig, B.J. Hickey, R.L. Stamps, Nat. Mater. 6, 70 (2007)

    Article  ADS  Google Scholar 

  20. R. Pradheesh, H.S. Nair, V. Sankaranarayanan, K. Sethupathi, Appl. Phys. Lett. 101, 142401 (2012)

    Article  ADS  Google Scholar 

  21. S. Karmakar, S. Taran, E. Bose, B.K. Chaudhuri, C.P. Sun, C.L. Huang, H.D. Yang, Phys. Rev. B 77, 144409 (2008)

    Article  ADS  Google Scholar 

  22. E. Fertman, S. Dolya, V. Desnenko, L.A. Pozhar, M. Kajnakova, A. Feher, J. App. Phys. 115, 203906 (2014)

    Article  ADS  Google Scholar 

  23. R. Gupta, R. Ansari, A. Khandelwal, J. Fassbender, A. Gupta, Nuclear Instru. Methods B 266, 1407 (2008)

    Article  ADS  Google Scholar 

  24. R. Gupta, K.-H. Han, K.P. Lieb, G.A. Muller, P. Schaaf, K. Zhang, J. Appl. Phys. 97, 073911 (2005)

    Article  ADS  Google Scholar 

  25. R. Abrudan, J. Miguel, M. Bernien, C. Tieg, M. Piantek, J. Kirschner, W. Kuch, Phys. Rev. B 77, 014411 (2008)

    Article  ADS  Google Scholar 

  26. J.G. Ovejero, V. Godinho, B. Lacroix, M.A. García, A. Hernando, A. Fernández, Mater. Design 171, 107691 (2019)

    Article  Google Scholar 

  27. N.R. Panda, S.P. Pati, A. Das, D. Das, Appl. Surf. Sci. 449, 654 (2018)

    Article  ADS  Google Scholar 

  28. K. Simeonidis, C. Martinez Boubeta, O. Iglesias, A. Cabot, M. Angelakeris, S. Mourdikoudis, I. Tsiaoussis, A. Delimitis, C. Dendrinou Samara, O. Kalogirou, Phys. Rev. B 84, 1 (2011)

    Article  Google Scholar 

  29. M.A. Langell, M.D. Anderson, G.A. Carson, L. Peng, S. Smith, Phys. Rev. B 59, 4791 (1999)

    Article  ADS  Google Scholar 

  30. J.G. Cook, M.P. Van der Meer, Thin Solid Films 144, 165 (1986)

    Article  ADS  Google Scholar 

  31. E.A. Gulbransen, K.F. Andrew, J. Electrochem. Soc. 98, 241 (1951)

    Article  Google Scholar 

  32. Z.G. Wang, C. Dufour, E. Paumier, M. Toulemonde, J. Phys. Condens. Matter 6, 6733 (1994)

    Article  ADS  Google Scholar 

  33. K. Izui, S. Furuno, Proceedings of the 11th International Congress on Electron Microscopy, Kyoto 1986, edited by Timura, S. Maruse, and T Suzuki _Japan Society of Electron Microscopy, Tokyo, (1986), p 1299.

  34. A. Meftah, F. Brisard, J.M. Costantini, M. Hage-Ali, J.P. Stoquert, F. Studer, M. Toulemonde, Phys. Rev. B 48, 920 (1993)

    Article  ADS  Google Scholar 

  35. F. Thibaudau, J. Cousty, E. Balanzat, S. Bouffard, Phys. Rev. Lett. 67, 1582 (1991)

    Article  ADS  Google Scholar 

  36. M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 156, 1 (1999)

    Article  ADS  Google Scholar 

  37. M. Toulemonde, C. Dufour, E. Paumier, Phys. Rev. B 46, 14362 (1992)

    Article  ADS  Google Scholar 

  38. J.A. Brinkman, J. Appl. Phys. 25, 961 (1954)

    Article  ADS  Google Scholar 

  39. J.A. Brinkman, Am. J. Phys. 24, 246 (1956)

    Article  ADS  Google Scholar 

  40. J.P. Biersack, L.G. Haggmark, Nucl. Instrum. Methods Phys. Res. 174, 257 (1980)

    Article  ADS  Google Scholar 

  41. T.J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Lunning, J. Stoehr, R.L. White, Phys. Rev. B 64, 214422 (2001)

    Article  ADS  Google Scholar 

  42. C.A.F. Vaz, E.L. Altman, V.E. Henrich, Phys. Rev. B 81, 104428 (2010)

    Article  ADS  Google Scholar 

  43. W.L. Roth, J. Phys. Chem. Solids 25, 1 (1964)

    Article  ADS  Google Scholar 

  44. A.K. Cheetham, D.A.O. Hope, Phys. Rev. B 27, 6964 (1983)

    Article  ADS  Google Scholar 

  45. M. Grimsditch, A. Hoffmann, P. Vavassori, H. Shi, D. Lederman, Phys. Rev. Lett. 90, 257201 (2003)

    Article  ADS  Google Scholar 

  46. X. Chen, C. Binek, A. Hoshstrat, W. Kleemann, Phys. Rev. B 65, 012415 (2001)

    Article  ADS  Google Scholar 

  47. C. Leighton, H. Suhl, M.J. Pechan, R. Compton, J. Nogues, I.K. Schuller, J. Appl. Phys. 92, 1483 (2002)

    Article  ADS  Google Scholar 

  48. H.-J. Kim, J.-H. Park, E. Vescovo, Phys. Rev. B 61, 15284 (2000)

    Article  ADS  Google Scholar 

  49. C.F. Chang, Z. Hu, S. Klein, X.H. Liu, R. Sutarto, A. Tanaka, J.C. Cezar, N.B. Brookes, H.-J. Lin, H.H. Hsieh, C.T. Chen, A.D. Rata, L.H. Tjeng, Phys. Rev. X 6, 041011 (2016)

    Google Scholar 

  50. H.-J. Kim, J.-H. Park, E. Vescovo, Phys. Rev. B 67, 15284 (2000)

    Article  ADS  Google Scholar 

  51. J. Schlappa, C. Schußler-Langeheine, C.F. Chang, H. Ott, A. Tanaka, Z. Hu, M.W. Averkort, E. Schierle, E. Weschke, G. Kaindl, L.H. Tjeng, Phys. Rev. Lett. 100, 026406 (2008)

    Article  ADS  Google Scholar 

  52. E. Stavitski, F.M.F. de Groot, Micron 41, 687 (2010)

    Article  Google Scholar 

  53. D. Bazin, I. Kovacs, L. Guczi, P. Parent, C. Laffon, F. De Groot, O. Ducreux, J. Lync, J. Catalysis 189, 456 (2000)

    Article  Google Scholar 

  54. D. Su, S. Dou, G. Wang, Sci. Rep. 4, 5767 (2014)

    Article  ADS  Google Scholar 

  55. M. Shepit, V.K. Paidi, C.A. Roberts, J. van Lierop, Sci. Rep. 10, 20990 (2020)

    Article  Google Scholar 

  56. F.M.F. De Groot, M. Grioni, J.C. Fuggle, J. Ghijsen, G.A. Sawatzky, H. Petersen, Phys. Rev. B 40, 5715 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been funded by UGC DAE CSR Indore and IUAC, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratnesh Gupta.

Ethics declarations

Conflict of interest

There is no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Sangeeth, K., Gupta, M. et al. Magnetic properties of exchange-biased FeCo/CoO bilayer and its electronic structure. Appl. Phys. A 128, 342 (2022). https://doi.org/10.1007/s00339-022-05464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05464-6

Keywords

Navigation