Skip to main content
Log in

The significance of structural, optical, and biological properties of NiO nanoparticles: effect of calcination temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nowadays, antimicrobial agents are currently being employed using noble metal nanoparticles such as gold and silver. NiO nanoparticles are a good alternative in this case, since they are less expensive than gold and silver. Antimicrobial agents are very important in textiles, water disinfection, medicine and food packaging. Most of these applications employ nanoparticles of specific shape, size and chemical composition. For these reason, present work focuses on synthesis of Nickel oxide nanoparticles by Chemical precipitation method. Obtained particles by this method were characterizes for their structural, optical, and antimicrobial properties after calcination process at various temperature of 400 °C, 600 °C, and 800 °C at 2 h. The Rietveld refinement was carried out to obtain the crystal structure and purity of synthesis was achieved. The analysis of peak broadening was performed to estimate the discrepancy in crystallite size and microstrain components of the nanoparticles with the calcination temperatures and were compared with Transmission Electron Microscope results. The calculated band gap value varies from 3.37 to 3.3 eV by increasing the calcination temperature. The emission peak at 490 and 580 nm affirmed the presence of defects in the NiO lattice. The formation of NiO was confirmed using FTIR for all the calcination at different temperatures nanoparticles. Antimicrobial activities of prepared nanoparticles were tested against selected four distinct pathogenic bacterial and three non-identical fungi species by the disc diffusion method. Results of the zone of inhibition values (mm) indicate that the test samples were exhibited significant antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Int. J. Nanomed. 2012, 6003–6009 (2012)

    Google Scholar 

  2. A. Raghunath, E. Perumal, Int. J. Antimicrob. Agents 49(2), 137–152 (2017)

    Google Scholar 

  3. M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J.D. Aberasturi, I.R.D. Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Trends Biotechnol. 30(10), 499–511 (2012)

    Google Scholar 

  4. K.R. Raghupathi, R.T. Koodali, A.C. Manna, Langmuir 27(7), 4020–4028 (2011)

    Google Scholar 

  5. S. Andreescu, M. Ornatska, J.S. Erlichman, A. Estevez, J.C. Leiter (2012) Biomedical applications of metal oxide nanoparticles. In: Matijević E (eds) Fine particles in medicine and pharmacy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0379-1_3

    Chapter  Google Scholar 

  6. A.S. Karakoti, P. Munusamy, K. Hostetler, V. Kodali, S. Kuchibhatla, G. Orr, J.G. Pounds, J.G. Teeguarden, B.D. Thrall, D.R. Baer, Surf. Interface Anal. 44(8), 882–889 (2012)

    Google Scholar 

  7. C. Buzea, I.I. Pacheco, K. Robbie, Biointerphases 2(4), MR71 (2007)

    Google Scholar 

  8. T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biomaterials 28(31), 4717–4732 (2007)

    Google Scholar 

  9. A.K. Gupta, M. Gupta, Biomaterials 26(18), 3995–4402 (2005)

    Google Scholar 

  10. M. Azizi-Lalabadi, A. Ehsani, B. Divband, M. Alizadeh-Sani, Sci. Rep. 9(1), 17439 (2019)

    ADS  Google Scholar 

  11. B. Sasi, K.G. Gopchandran, P.K. Manoj, P. Koshy, P. Prabhakara Rao, V.K. Vaidyan, Vacuum 68(2), 149–154 (2002)

    ADS  Google Scholar 

  12. C.J. Pandian, R. Palanivel, S. Dhananasekaran, Chin. J. Chem. Eng. 23(8), 1307–1315 (2015)

    Google Scholar 

  13. S. Sudhasree, A. Shakila Banu, P. Brindha, G.A. Kurian, Toxicol. Environ. Chem. 96(5), 743–754 (2014)

    Google Scholar 

  14. K. Kaviyarasu, D. Sajan, P.A. Devarajan, Appl. Nanosci. 3(6), 529–533 (2013)

    ADS  Google Scholar 

  15. M.P. Abbracchio, J. Simmons-Hansen, M. Costa, J. Toxicol. Environ. Health 9(4), 663–676 (1982)

    Google Scholar 

  16. A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, L.J. Kennedy, J. Photochem. Photobiol. 164, 352–360 (2016)

    Google Scholar 

  17. B. Kisan, P.C. Shyni, S. Layek, H.C. Verma, D. Hesp, V. Dhanak, S. Krishnamurthy, A. Perumal, IEEE Trans. Magn. 50(1), 1–4 (2014)

    Google Scholar 

  18. V. Verma, M. Katiyar, Thin Solid Films 527, 369–376 (2013)

    ADS  Google Scholar 

  19. K. Yoshimura, T. Miki, S. Tanemura, Jpn. J. Appl. Phys. 34(1), 2440–2446 (1995)

    ADS  Google Scholar 

  20. C.S. Carney, C.J. Gump, A.W. Weimer, Mater. Sci. Eng. A 431(1–2), 26–40 (2006)

    Google Scholar 

  21. J. Bahadur, D. Sen, S. Mazumder, S. Ramanathan, J. Solid State Chem. 181(5), 1227–1235 (2008)

    ADS  Google Scholar 

  22. S. Pooyandeh, S. Shahidi, A. Khajehnezhad, Z. Ghoranneviss, J. Text. Inst. 112(6), 887–895 (2021)

    Google Scholar 

  23. R. Nadarajan, W.A.W.A. Bakar, R. Ali, Adv. Mat. Res. 1107, 73–78 (2015)

    Google Scholar 

  24. A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Turck, Am. J. Clin. Pathol. 45(4), 493–496 (1966)

    Google Scholar 

  25. J.A. Ramos-Guivar, J.C. Gonzalez-Gonzalez, F.J. Litterst, E.C. Passamani, Cryst. Growth Des. 21(4), 2128–2141 (2021)

    Google Scholar 

  26. P. Dubey, N. Kaurav, R.S. Devan, G.S. Okram, Y.K. Kuo, RSC Adv. 8(11), 5882–5890 (2018)

    ADS  Google Scholar 

  27. F. Izumi, K. Momma, Solid State Phenom. 130, 12–20 (2007)

    Google Scholar 

  28. S. Gates-Rector, T. Blanton, The powder diffraction file: a quality materials characterization database. Powder Diffr. 34(4), 352–360 (2019)

    ADS  Google Scholar 

  29. W. Qin, T. Nagase, Y. Umakoshi, J.A. Szpunar, Philos. Mag. Lett. 88(3), 169–179 (2008)

    ADS  Google Scholar 

  30. A. Miri, F. Mahabbati, A. Najafidoust, M. J. Miri, M. Sarani, Inorg. Nano-Met. Chem. 52(1), 122–131 (2020)

    Google Scholar 

  31. G.C. Park, T.Y. Seo, C.H. Park, J.H. Lim, J. Joo, Ind. Eng. Chem. Res. 56(29), 8235–8240 (2017)

    Google Scholar 

  32. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13(1), 251–256 (2011)

    ADS  Google Scholar 

  33. L. Motevalizadeh, Z. Heidary, M.E. Abrishami, Bull. Mater. Sci. 37(3), 397–405 (2014)

    Google Scholar 

  34. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, Solid State Commun. 149(43–44), 1919–1923 (2009)

    ADS  Google Scholar 

  35. C. Amutha, S. Thanikaikarasan, V. Ramadas, S. Asath-Bahadur, B. Natarajan, R. Kalyani, Optik 127(10), 4281–4286 (2016)

    ADS  Google Scholar 

  36. H.M. Mohaideen, S.S. Fareed, B. Natarajan, Surf. Rev. Lett. 26(8), 1950043 (2019)

    ADS  Google Scholar 

  37. J. Livage, D. Ganguli, Sol. Energy Mater. Sol. Cells 68(3–4), 365–381 (2001)

    Google Scholar 

  38. G.K. Williamson, W.H. Hall, Acta Metall. 1(1), 22–31 (1953)

    Google Scholar 

  39. W.H. Hall, Proc. Phys. Soc. A 62(11), 741–743 (1949)

    ADS  Google Scholar 

  40. S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, P.V. Satyanarayana, Mater. Charact. 62(7), 661–672 (2011)

    Google Scholar 

  41. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8(4), 123–134 (2014)

    ADS  Google Scholar 

  42. J. Zhang, Y. Zhang, K. Xu, V. Ji, Mater. Lett. 62(8–9), 1328–1332 (2008)

    Google Scholar 

  43. H.M. Ledbetter, R.P. Reed, J. Phys. Chem. Ref. Data 2(3), 531–618 (1973)

    ADS  Google Scholar 

  44. G. Madhu, V.C. Bose, K. Maniammal, A.S.A. Raj, V. Biju, Phys. B Condens. Matter. 421, 87–91 (2013)

    ADS  Google Scholar 

  45. A. Seetharaman, S. Dhanuskodi, Spectrochim. Acta A Mol. Biomol. Spectrosc. 127, 543–549 (2014)

    ADS  Google Scholar 

  46. K. Venkateswarlu, A. Chandra Bose, N. Rameshbabu, Physica B 405(20), 4256–4261 (2010)

    ADS  Google Scholar 

  47. M.S.S. Saravanan, K. Sivaprasad, P. Susila, S.P.K. Babu, Physica B 406(2), 165–168 (2011)

    ADS  Google Scholar 

  48. P.T. Garg, R. Rai, B.K. Singh, Nucl. Instrum. Methods Phys. Res. Sect. A 736, 128–134 (2014)

    ADS  Google Scholar 

  49. K. Maniammal, G. Madhu, V. Biju, Phys. E Low Dimens. Syst. Nanostruct. 85, 214–222 (2017)

    ADS  Google Scholar 

  50. R.L. Fullman, J.C. Fisher, J. Appl. Phys. 22(11), 1350–1355 (1951)

    ADS  Google Scholar 

  51. C.V. Kopezky, V.Y. Novikov, L.K. Fionova, N.A. Bolshakova, Acta Metall. 33(5), 873–879 (1985)

    Google Scholar 

  52. Y. Jin, B. Lin, A.D. Rollett, G.S. Rohrer, M. Bernacki, N. Bozzolo, J. Mater. Sci. 50(15), 5191–5203 (2015)

    ADS  Google Scholar 

  53. N. Srivastava, P.C. Srivastava, Physica E 42(9), 2225–2230 (2010)

    ADS  Google Scholar 

  54. H.M. Hosni, S.A. Fayek, S.M. El-Sayed, M. Roushdy, M.A. Soliman, Vacuum 81(1), 57–58 (2006)

    ADS  Google Scholar 

  55. A. Sawaby, M.S. Selim, S.Y. Marzouk, M.A. Mostafa, A. Hosny, Physica B 405(16), 3412–3420 (2010)

    ADS  Google Scholar 

  56. K. Saravanakumar, K. Ravichandran, R. Chandramohan, S. Gobalakrishnan, M. Chavali, Superlatt. Microstruct. 52(3), 528–540 (2012)

    ADS  Google Scholar 

  57. G. Anandha Babu, G. Ravi, M. Navaneethan, M. Arivanandhan, Y. Hayakawa, J. Mater. Sci. Mater. Electron. 25(12), 5231–5240 (2014)

    Google Scholar 

  58. B. Karthikeyan, T. Pandiyarajan, S. Hariharan, M.S. Ollakkan, CrystEngComm 18(4), 601–607 (2016)

    Google Scholar 

  59. G. Anandha Babu, G. Ravi, Y. Hayakawa, Appl. Phys. A 119(1), 219–232 (2014)

    ADS  Google Scholar 

  60. A.C.H. Barreto, V.R. Santiago, S.E. Mazzetto, J.C. Denardin, R. Lavín, G. Mele, M.E.N.P. Ribeiro, I.G.P. Vieira, T. Gonçalves, N.M.P.S. Ricardo, P.B.A. Fechine, J. Nanopart. Res. 13(12), 6545–6553 (2011)

    ADS  Google Scholar 

  61. G. Sharma, P. Jeevanandam, RSC Adv. 3(1), 189–200 (2013)

    ADS  Google Scholar 

  62. P. Kathiravan, T. Balakrishnan, C. Srinath, K. Ramamurthi, S. Thamotharan, Karbala Int. J. Mod. Sci. 2(4), 226–238 (2016)

    Google Scholar 

  63. M.M. Kashani-Motlagh, A.A. Youzbashi, F. Hashemzadeh, L. Sabaghzadeh, Powder Technol. 237, 562–568 (2013)

    Google Scholar 

  64. J. Straszko, J. Możejko, M. Olszak-Humienik, J. Therm. Anal. Calorim. 45(5), 1109–1116 (1995)

    Google Scholar 

  65. M. Elasabahy, K.L. Wooley, ChemInform 43(27), 2545–2561 (2012)

    Google Scholar 

  66. L. Wang, C. Hu, L. Shao, Int. J Nanomed. 12, 1227–1249 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors record their sincere gratitude to the management, principal of Mohamed Sathak Engineering College, Kilakarai for their support and encouragement by extending research facilities in the institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Natarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohaideen, H.M., Fareed, S.S. & Natarajan, B. The significance of structural, optical, and biological properties of NiO nanoparticles: effect of calcination temperature. Appl. Phys. A 128, 332 (2022). https://doi.org/10.1007/s00339-022-05460-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05460-w

Keywords

Navigation