Skip to main content
Log in

Pressure-sensitive conversions between Cassie and Wenzel wetting states on a nanocorrugated surface

  • T.C. : Materials by Design Under Pressure: experiments and theory
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations were used to study pressure-controlled wetting behavior of a nanostructured surface. Model graphene-like material functionalized by nanosized asperities was shown to support reversible dynamic transitions between superhydrophobic Cassie states that minimize contact with water and completely wetted Wenzel states. In practical applications, similar reversibility has been achieved by hierarchical corrugations, air trapping, or tailored geometry of surface posts. Nano corrugations alone are shown to secure a robust Cassie state at low pressures, support transition to Wenzel state at pressure of O(102) atm and can recover the Cassie regime without prohibitive hysteresis upon decompression. For O(10) nm surface fragments, timescales of dynamic response to compression deduced from the relaxation rates of water uptake fluctuations were estimated in the range of 0.1–1 ns. On small surfaces, an essentially barrier-free transition to Wenzel state is typically initiated at surface edges, followed by cooperative spreading across the entire surface. Conversely, the recovery of the Cassie state, which involves mild hysteresis, relies on nucleation away from the edges and should therefore be essentially independent of surface size. In conventional picture, cycling rate is determined by the latter process. This suggests subnanosecond responses of surface wettability could also be realized on macroscopic samples, leaving pressure control as the practical rate determinant in eventual application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.G. Jothi Prakash, R. Prasanth, Approaches to design a surface with tunable wettability: a review on surface properties. J. Mater. Sci. 56, 108–135 (2021)

    Article  ADS  Google Scholar 

  2. Q.H. Zeng, H. Zhou, J.X. Huang, Z.G. Guo, Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale 13, 11734–11764 (2021)

    Article  Google Scholar 

  3. S.N. Smirnov, I.V. Vlassiouk, N.V. Lavrik, Voltage-gated hydrophobic nanopores. ACS Nano 5, 7453–7461 (2011)

    Article  Google Scholar 

  4. M.R. Powell, L. Cleary, M. Davenport, K.J. Shea, Z.S. Siwy, Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat. Nanotechnol. 6, 798–802 (2011)

    Article  ADS  Google Scholar 

  5. Y. Grosu, M. Mierzwa, V.A. Eroshenko, S. Pawlus, M. Chorazewski, J.M. Nedelec, J.P.E. Grolier, Mechanical, thermal, and electrical energy storage in a single working body: electrification and thermal effects upon pressure-induced water intrusion extrusion in nanoporous solids. ACS Appl. Mater. Interfaces 9, 7044–7049 (2017)

    Article  Google Scholar 

  6. A. Tinti, A. Giacomello, Y. Grosu, C.M. Casciola, Intrusion and extrusion of water in hydrophobic nanopores. Proc. Natl. Acad. Sci. USA 114, E10266–E10273 (2017)

    Article  ADS  Google Scholar 

  7. E. Bormashenko, Progress in understanding wetting transitions on rough surfaces. Adv. Coll. Interface Sci. 222, 92–103 (2015)

    Article  Google Scholar 

  8. B. Liu, F.F. Lange, Pressure induced transition between superhydrophobic states: Configuration diagrams and effect of surface feature size. J. Coll. Interface Sci. 298, 899–909 (2006)

    Article  ADS  Google Scholar 

  9. W.Q. Ren, Wetting transition on patterned surfaces: transition states and energy barriers. Langmuir 30, 2879–2885 (2014)

    Article  Google Scholar 

  10. A. Checco, B.M. Ocko, A. Rahman, C.T. Black, M. Tasinkevych, A. Giacomello, S. Dietrich, Collapse and reversibility of the superhydrophobic state on nanotextured surfaces. Phys. Rev. Lett. 112, 216101 (2014)

    Article  ADS  Google Scholar 

  11. A. Lafuma, D. Quere, Superhydrophobic states. Nat. Mater. 2, 457–460 (2003)

    Article  ADS  Google Scholar 

  12. D. Quere, Wetting and roughness. Ann. Rev. Mater. Res. 38, 71–99 (2008)

    Article  ADS  Google Scholar 

  13. F. Leroy, F. Muller-Plathe, Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale. Langmuir 27, 637–645 (2011)

    Article  Google Scholar 

  14. P. Forsberg, F. Nikolajeff, M. Karlsson, Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter 7, 104–109 (2011)

    Article  ADS  Google Scholar 

  15. G. Whyman, E. Bormashenko, How to make the Cassie wetting state stable? Langmuir 27, 8171–8176 (2011)

    Article  Google Scholar 

  16. M.S. Dhindsa, N.R. Smith, J. Heikenfeld, P.D. Rack, J.D. Fowlkes, M.J. Doktycz, A.V. Melechko, M.L. Simpson, Reversible electrowetting of vertically aligned superhydrophobic carbon nanofibers. Langmuir 22, 9030–9034 (2006)

    Article  Google Scholar 

  17. J. Heikenfeld, M. Dhindsa, Electrowetting on superhydrophobic surfaces: present status and prospects. J. Adhes. Sci. Technol. 22, 319–334 (2008)

    Article  Google Scholar 

  18. F. Mugele, Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions. Phys. Rev. Lett. 106, 014501 (2011)

    Article  ADS  Google Scholar 

  19. D. Vanzo, A. Luzar, D. Bratko, Reversible electrowetting transitions on superhydrophobic surfaces. Phys. Chem. Chem. Phys. 23, 27005–27013 (2021)

    Article  Google Scholar 

  20. G. Whyman, E. Bormashenko, Wetting transitions on rough substrates: general considerations. J. Adhes. Sci. Technol. 26, 207–220 (2012)

    Article  Google Scholar 

  21. C.D. Daub, J. Wang, S. Kudesia, D. Bratko, A. Luzar, The influence of molecular-scale roughness on the surface spreading of an aqueous nanodrop. Faraday Discuss. 146, 67–77 (2010)

    Article  ADS  Google Scholar 

  22. T. Verho, J.T. Korhonen, L. Sainiemi, V. Jokinen, C. Bower, K. Franze, S. Franssila, P. Andrew, O. Ikkala, R.H.A. Ras, Reversible switching between superhydrophobic states on a hierarchically structured surface. Proc. Natl. Acad. Sci. USA 109, 10210–10213 (2012)

    Article  ADS  Google Scholar 

  23. K. Leung, A. Luzar, Dynamics of capillary evaporation. II. Free energy barriers. J. Chem. Phys. 113, 5845–5852 (2000)

    Article  ADS  Google Scholar 

  24. S. Sharma, P.G. Debenedetti, Free energy barriers to evaporation of water in hydrophobic confinement. J. Phys. Chem. B 116, 13282–13289 (2012)

    Article  Google Scholar 

  25. T. Werder, J.H. Walther, R.L. Jaffe, T. Halicioglu, P. Koumoutsakos, On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107, 1345–1352 (2003)

    Article  Google Scholar 

  26. V.B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E.R. Mbuta, A. Khan, Graphene synthesis, characterization and its applications: a review. Results Chem. 3, 100163 (2021)

    Article  Google Scholar 

  27. A.R. Leach, Molecular Modelling: Principles and Applications (Prentice Hall, London, 2001)

    Google Scholar 

  28. B. Lee, F.M. Richards, Interpretation of protein structures-estimation of static accessibility. J. Mol. Biol. 55, 379–380 (1971)

    Article  Google Scholar 

  29. M.L. Connolly, Solvent-accessible surfaces of protein and nucleic-acids. Science 221, 709–713 (1983)

    Article  ADS  Google Scholar 

  30. J.H. Wang, D. Bratko, A. Luzar, Probing surface tension additivity on chemically heterogeneous surfaces by a molecular approach. Proc. Natl. Acad. Sci. USA 108, 6374–6379 (2011)

    Article  ADS  Google Scholar 

  31. Y.S. Li, D. Quere, C.J. Lv, Q.S. Zheng, Monostable superrepellent materials. Proc. Natl. Acad. Sci. USA 114, 3387–3392 (2017)

    Article  ADS  Google Scholar 

  32. S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  MATH  Google Scholar 

  33. I.C. Yeh, M.L. Berkowitz, Ewald summation for systems with slab geometry. J. Chem. Phys. 111, 3155–3162 (1999)

    Article  ADS  Google Scholar 

  34. M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University Press, New York, 2017)

    Book  MATH  Google Scholar 

  35. K. Lum, D. Chandler, Phase diagram and free energies of vapor films and tubes for a confined fluid. Int. J. Thermophys. 19, 845–855 (1998)

    Article  Google Scholar 

  36. D. Bratko, R.A. Curtis, H.W. Blanch, J.M. Prausnitz, Interaction between hydrophobic surfaces with metastable intervening liquid. J. Chem. Phys. 115, 3873–3877 (2001)

    Article  ADS  Google Scholar 

  37. H. Acharya, S. Ranganathan, S.N. Jamadagni, S. Garde, Mapping hydrophobicity at the nanoscale: applications to heterogeneous surfaces and proteins. Faraday Discuss. 146, 353 (2010)

    Article  ADS  Google Scholar 

  38. N. Giovambattista, P.J. Rossky, P.G. Debenedetti, Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Phys. Rev. E 73, 041604 (2006)

    Article  ADS  Google Scholar 

  39. R. Evans, M.C. Stewart, The local compressibility of liquids near non-adsorbing substrates: a useful measure of solvophobicity and hydrophobicity? J. Phys. Cond. Matter 27, 194111 (2015)

    Article  ADS  Google Scholar 

  40. D. Vanzo, D. Bratko, A. Luzar, Wettability of pristine and alkyl-functionalized graphane. J. Chem. Phys. 137, 034707 (2012)

    Article  ADS  Google Scholar 

  41. D. Vanzo, D. Bratko, A. Luzar, Nanoconfined water under electric field at constant chemical potential undergoes electrostriction. J. Chem. Phys. 140, 074710 (2014)

    Article  ADS  Google Scholar 

  42. D. Vanzo, D. Bratko, A. Luzar, Dynamic control of nanopore wetting in water and saline solutions under an electric field. J. Phys. Chem. B 119, 8890–8899 (2015)

    Article  Google Scholar 

  43. N. Ojaghlou, D. Bratko, M. Salanne, M. Shafiei, A. Luzar, Solvent-solvent correlations across graphene: the effect of image charges. ACS Nano 14, 7987–7998 (2020)

    Article  Google Scholar 

  44. S. Zamfir, F. Moucka, D. Bratko, High-pressure infiltration-expulsion of aqueous NaCl in planar hydrophobic nanopores. J. Phys. Chem. C 124, 23433–23445 (2020)

    Article  Google Scholar 

  45. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)

    Article  Google Scholar 

  46. C.D. Daub, D. Bratko, K. Leung, A. Luzar, Electrowetting at the nanoscale. J. Phys. Chem. C 111, 505–509 (2007)

    Article  Google Scholar 

  47. J.A. Ritchie, J.S. Yazdi, D. Bratko, A. Luzar, Metastable sessile nanodroplets on nanopatterned surfaces. J. Phys. Chem. C 116, 8634–8641 (2012)

    Article  Google Scholar 

  48. J. Driskill, D. Vanzo, D. Bratko, A. Luzar, Wetting transparency of graphene in water. J. Chem. Phys. 141, 18C517 (2014)

    Article  Google Scholar 

  49. B.S. Jabes, J. Driskill, D. Vanzo, D. Bratko, A. Luzar, Metastable vapor in a janus nanoconfinement. J. Phys. Chem. C 121, 13144–13150 (2017)

    Article  Google Scholar 

  50. Y. Kopel, N. Giovambattista, Comparative study of water-mediated interactions between hydrophilic and hydrophobic nanoscale surfaces. J. Phys. Chem. B 123, 10814–10824 (2019)

    Article  Google Scholar 

  51. D. Bratko, C.D. Daub, K. Leung, A. Luzar, Effect of field direction on electrowetting in a nanopore. J. Am. Chem. Soc. 129, 2504–2510 (2007)

    Article  Google Scholar 

  52. R. Evans, Fluids adsorbed in narrow pores - phase-equilibria and structure. J. Phys. Cond. Matt. 2, 8989–9007 (1990)

    Article  ADS  Google Scholar 

  53. K. Lum, A. Luzar, Pathway to surface-induced phase transition of a confined fluid. Phys. Rev. E 56, R6283–R6286 (1997)

    Article  ADS  Google Scholar 

  54. K. Leung, A. Luzar, D. Bratko, Dynamics of capillary drying in water. Phys. Rev. Lett. 90, 065502 (2003)

    Article  ADS  Google Scholar 

  55. E. Bormashenko, R. Pogreb, G. Whyman, M. Erlich, Resonance Cassie-Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface. Langmuir 23, 12217–12221 (2007)

    Article  Google Scholar 

  56. C. Ishino, K. Okumura, Nucleation scenarios for wetting transition on textured surfaces: the effect of contact angle hysteresis. Europhys. Lett. 76, 464–470 (2006)

    Article  ADS  Google Scholar 

  57. S. Gupta, A. Irback, B. Petersson, R.V. Gavai, F. Karsch, The correlation lengths and the order of the phase transition in 3-dimensional z-3 symmetric models. Nuclear Phys. B 329, 263–284 (1990)

    Article  ADS  Google Scholar 

  58. R.G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 2. Surfactants. J. Fluid Mech. 168, 192–220 (1986)

    ADS  Google Scholar 

  59. P.G. de Gennes, F. Brochard-Wyart, Dynamics of partial wetting. Adv. Colloid Interface Sci. 39, 1–11 (1992)

    Article  Google Scholar 

  60. M. Ramiasa, J. Ralston, R. Fetzer, R. Sedev, The influence of topography on dynamic wetting. Adv. Coll. Interface Sci. 206, 275–293 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge National Science Foundation for support (award CHE-1800120) and Extreme Science and Engineering Discovery Environment (XSEDE), funded by NSF Grant No. OCI-1053575, and the National Energy Research Scientific Computing Center (NERSC), funded by the Office of Science of the U.S. Department of Energy (No. DEAC02-05CH11231) for supercomputing time allocations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bratko.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Luzar: Deceased on March 5, 2019.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 28 kb)

Supplementary file2 (MP4 55291 kb)

Supplementary file3 (MPG 44451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanzo, D., Luzar, A. & Bratko, D. Pressure-sensitive conversions between Cassie and Wenzel wetting states on a nanocorrugated surface. Appl. Phys. A 128, 323 (2022). https://doi.org/10.1007/s00339-022-05458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05458-4

Keywords

Navigation