Skip to main content

Advertisement

Log in

Glucose oxidase immobilized macro porous silicon based conductive glucose sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Conductive glucose sensor using glucose oxidase immobilized macro porous silicon has been studied in this paper. Macro porous silicon layer is grown on p-type silicon substrate by electrochemical etching process. Two electrodes have been made with silver on front side of the macro porous silicon layer. Then the macro porous silicon surface has been functionalized for efficient glucose sensing by physisorption of glucose oxidase. Current–voltage characteristics have been studied at different glucose concentrations. Current value initially increases due to adsorption of glucose molecules upto 1 mM glucose concentration, after that current value decreases with increasing glucose concentration. Sensor response has been analysed with the help of different types of conduction mechanisms like hopping, Poole–Frenkel, trap-assisted and Fowler–Nordheim tunneling. Different conduction mechanisms are dominating at different applied field ranges. The sensor shows good response, high sensitivity and excellent repetitive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Jahandari, M.A. Taher, H. Karimi-Maleh, A. Khodadadi, E. Faghih-Mirzaei, J. Electroanal. Chem. 840, 313–318 (2019)

    Google Scholar 

  2. S. Guler, C. Oruc, A. Altindal, J. Microbiol. Methods 161, 96–101 (2019)

    Google Scholar 

  3. I.M. Bhattacharyya, S. Cohen, A. Shalabny, M. Bashouti, B. Akabayov, G. Shalev, Biosens. Bioelectron. 132, 143–161 (2019)

    Google Scholar 

  4. H. Zhang, B.L. Miller, Biosensors Bioelectron. 141, 111476 (2019)

    Google Scholar 

  5. P. Chen, M.G. Hollingsworth, S. Pandit, A. Park, D. Montgomery, D. AuCoin, J. Gu, F. Zenhausern, Talanta 191, 81–88 (2019)

    Google Scholar 

  6. M. Mikani, S. Talaei, R. Rahmanian, P. Ahmadi, A. Mahmoudi, J. Electroanal. Chem. 840, 285–294 (2019)

    Google Scholar 

  7. T. Sarkar, N. Mukherjee, J. Das, Mater. Res. Express 6, 115078 (2019)

    ADS  Google Scholar 

  8. S.K. Vashist, D. Zheng, K.A. Rubeaan, J.H.T. Luonge, F.S. Sheu, Anal. Chim. Acta 703, 124–136 (2011)

    Google Scholar 

  9. K. Vasuki, G. Siva, A. Balasubramani, M. Pannipara, A.G. Al-Sehemi, Y. Xia, R. Fang, D.J. Yoo, T.R. Kumar, R. Ramachandr, G. Gnana kumar, Appl. Phys. A 125, 384 (2019)

    ADS  Google Scholar 

  10. J. Qi, H. Zhang, Z. Ji, M. Xu, Y. Zhang, Appl. Phys. A 119, 807–811 (2015)

    ADS  Google Scholar 

  11. A. Panda, P.D. Pukhrambam, G. Keiser, Appl. Phys. A 126, 153 (2020)

    ADS  Google Scholar 

  12. S. Felix, P. Kollu, S.K. Jeong, A.N. Grace, Appl. Phys. A 123, 620 (2017)

    ADS  Google Scholar 

  13. Md.A. Kafi, A. Paul, A. Vilouras, E.S. Hosseini, R.S. Dahiya, IEEE Sensors J. (2019). https://doi.org/10.1109/JSEN.2019.2928807

    Article  Google Scholar 

  14. J. Soto, T. Hughes, Y.S. Li, ACS Omega 4, 18312–18316 (2019)

    Google Scholar 

  15. A. Khamsavi, Y. Abdi, M.Z. Meymian, IEEE Sensors Lett 2(3), 1–4 (2017)

    Google Scholar 

  16. J. Yoon, S.N. Lee, M.K. Shin, H.W. Kim, H.K. Choi, T. Lee, J.W. Choi, Biosensors Bioelectron. 140, 111343 (2019)

    Google Scholar 

  17. T.C. Gokoglan, S. Soylemez, M. Kesik, I.B. Dogru, O. Turel, R. Yuksel, H.E. Unalan, L. Toppare, Food Chem. 220, 299–305 (2017)

    Google Scholar 

  18. H. Cao, Y. Zhu, L. Tang, X. Yang, C. Li, Electroanalysis 20, 2223–2228 (2008)

    Google Scholar 

  19. K.J. Babu, T. Rajkumar, D.J. Yoo, P. Siew-Moi, G.G. Kumar, ACS Sustain. Chem. Eng. 6(12), 16982–16989 (2018)

    Google Scholar 

  20. M. Ranjani, Y. Sathishkumar, Y.S. Lee, D.J. Yoo, A.R. Kim, G.G. Kumar, R. Soc. Chem. 5, 57804 (2015)

    Google Scholar 

  21. T. Sarkar, D. Basu, N. Mukherjee, J. Das, Mater. Today Proc. 5, 9798–9803 (2018)

    Google Scholar 

  22. T. Sarkar, N. Mukherjee, J. Das, J. Mater. Sci. Mater. Electron. 31, 18996–19002 (2020)

    Google Scholar 

  23. J.M. Buriak, Phil. Trans. R. Soc. A 364, 217–225 (2006)

    ADS  Google Scholar 

  24. L.T. Canham, Phys. Lett. 57, 1046 (1990)

    Google Scholar 

  25. A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herina, M. Ligeon, F. Mulier, Appl. Phys. Lett. 59, 304 (1991)

    ADS  Google Scholar 

  26. D.J. Lockwood, A.G. Wang, Solid State Commun. 94, 905–909 (1995)

    ADS  Google Scholar 

  27. F.P. Mathew, E.C. Alocilja, Biosens. Bioelectron. 20, 1656–1661 (2005)

    Google Scholar 

  28. V. Lehmann, R. Stengl, H. Reisinger, R. Detemple, W. Theiss, Appl. Phys. Lett. 78, 589–591 (2001)

    ADS  Google Scholar 

  29. J. Schilling, R.B. Wehrspohn, A. Birner, F. Muller, R. Hillebrand, U. Gosele, S.W. Leonard, J.P. Mondia, F. Genereux, H.M. van Driel, P. Kramper, V Sandoghdar K Busch. J. Opt. A: Pure Appl. Opt. 3, S121–S132 (2001)

    Google Scholar 

  30. A. Birner, R.B. Wehrspohn, U.M. Gösele, K. Busch, Adv. Mater. 13, 377–388 (2001)

    Google Scholar 

  31. S. Matthias, F. Muller, C. Jamois, R.B. Wehrspohn, U. Gosele, Adv. Mater. 16, 2166–2170 (2004)

    Google Scholar 

  32. C. Betty, R. Lal, D.K. Sharma, J.V. Yakhmi, J.P. Mittal, Sensors Actuator B 97, 334–343 (2004)

    Google Scholar 

  33. R. Angelucci, A. Poggi, L. Dori, A. Tagliani, G.C. Cardinali, F. Corticelli, M. Marisaldi, J. Porous Mater. 7, 197–200 (2000)

    Google Scholar 

  34. S.E. Letant, B.R. Hart, A.W. van Buuren, L.J. Terminello, Nat. Mater. 2, 391–395 (2003)

    ADS  Google Scholar 

  35. S. Matthias, F. Muller, Nature 424, 53–57 (2003)

    ADS  Google Scholar 

  36. H. Ohji, S. Izuo, P.J. French, K. Tsutsumi, Sensors Actuator A 97–98, 744–748 (2002)

    Google Scholar 

  37. T. Trifonov, A. Rodrıguez, F. Servera, L.F. Marsal, J. Pallares, R. Alcubilla, Phys. Status Solidi A 202, 1634–1638 (2005)

    ADS  Google Scholar 

  38. V. Lehmann, Nat. Mater. 1, 12–13 (2002)

    ADS  Google Scholar 

  39. V. Lehmann, Phys. Stat. Sol. A 197, 13–15 (2003)

    ADS  Google Scholar 

  40. X. Chen, J. Zhu, R. Tian, C. Yao, Sens. Actuators B Chem. 163, 272–280 (2012)

    Google Scholar 

  41. C. XiaoJun, X. Jie, J. LiPing, Z. JunJie, Sci. China, Ser. B: Chem. 52, 1999–2005 (2009)

    Google Scholar 

  42. Y.Y. Song, D. Zhang, W. Gao, X.H. Xia, Chemistry 11, 2177–2182 (2005)

    Google Scholar 

  43. X. Chen, Z. Chen, R. Tian, W. Yan, C. Yao, Anal. Chim. Acta 723, 94–100 (2012)

    Google Scholar 

  44. P. Gemeiner, Enzyme engineering (Ellis Horwood, New York, 1992), pp. 13–119

    Google Scholar 

  45. Q. Li, Y. Guan, Y. Zhang, Sensors Actuators B Chem. 272, 243–251 (2018)

    Google Scholar 

  46. S.S. Ghoreishizadeh, X. Zhang, S. Sharma, P. Georgiou, IEEE Sensors Lett. 2, 1–4 (2018)

    Google Scholar 

  47. D.H. Shin, W. Kim, J. Jun, J.S. Lee, J.H. Kim, J. Jang, Sensors Actuators B 264, 216–223 (2018)

    Google Scholar 

  48. M.B. Chorin, F. Moiler, F. Koch, Phys. Rev. B 49, 2981–2984 (1994)

    ADS  Google Scholar 

  49. J. Das, S. Pradhan, S.M. Hossain, J. Nanomat. Mol. Nanotechnol. (2016). https://doi.org/10.4172/2324-8777.1000180

    Article  Google Scholar 

  50. J. Frenkel, Phys. Rev. 54, 647–648 (1938)

    ADS  Google Scholar 

  51. M.L. Ciurea, I. Baltog, M. Lazar, V. Iancu, S. Lazanu, E. Pentia, Thin Solid Films 325, 271–277 (1998)

    ADS  Google Scholar 

  52. S. Fleischer, P.T. Lai, Y.C. Cheng, J. Appl. Phys. 73, 3348–3351 (1993)

    ADS  Google Scholar 

  53. R. Perera, A. Ikeda, R. Hattori, Y. Kuroki, Microelectron. Eng. 65, 357–370 (2003)

    Google Scholar 

  54. M. Lenzlinger, E.H. Snow, J. Appl. Phys. 40, 278–283 (1969)

    ADS  Google Scholar 

  55. Su. Li, J. Feng, X. Zhou, C. Ren, H. Li, X. Chen, Anal. Chem. 84, 5753–5758 (2012)

    Google Scholar 

  56. M. Yamaguchi, M. Mitsumori, Y. Kano, IEEE Eng. Med. Biol. 17, 59–63 (1998)

    Google Scholar 

  57. H. Yao, A.J. Shum, M. Cowan, I. Lahdesmaki, B.A. Parviz, Biosens. Bioelectron. 26, 3290–3296 (2011)

    Google Scholar 

  58. S.B. Bankar, M.V. Bule, R.S. Singhal, L. Ananthanarayan, Biotechnol. Adv. 27, 489–501 (2009)

    Google Scholar 

  59. S.M. Sze, Physics of semiconductor devices, 2nd edn. (Wiley, New York, 1981), p. 404

    Google Scholar 

  60. M.B. Chorin, F. Moller, F. Koch, Phys. Rev. B 51, 2199–2213 (1995)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Swami Vivekananda Merit-Cum-Means Scholarship (V3.0) sponsored scheme. The authors wish to acknowledge Department of Physics, Jadavpur University for providing internal instrumental facilities of FESEM funded by DST (FIST II programme), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayoti Das.

Ethics declarations

Conflict of interest

The authors declare that there are no known conflicts of interest associated with the work presented here and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, T., Mukherjee, N. & Das, J. Glucose oxidase immobilized macro porous silicon based conductive glucose sensor. Appl. Phys. A 128, 336 (2022). https://doi.org/10.1007/s00339-022-05453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05453-9

Keywords

Navigation