Skip to main content
Log in

Development of CuO nanoporous material as a highly efficient optoelectronic device

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The preparation and characterization of a large-scale of single-crystalline CuO nanoporous material on the surface of a Cu sheet by a simple thermal decomposition at 550 °C for 60 min were carried out. The field-emission scanning electron microscopy image analysis indicated that the formation of homogeneous porous CuO over Cu metal is formed, with separate parts look like islands with an inter-distance of 130 nm. Each island has a highly porous surface, in which each pore has a diameter of about 200 nm. X-ray diffraction confirmed the components of the samples with a high degree of purity have a crystalline size of 89 nm. The prepared novel Cu/CuO optoelectronic photodetector works with good efficiency for light detection under different intensity or wavelengths as the Jph values increased from 0.017 to 0.047 mA cm−2 upon rising the light power density from 25 to 100 mW cm−2. The responsivity and detectivity for the photodetector are 10 mAW−1 and 9.1 × 1010 Jones, respectively. Moreover, the photodetector has 0.25 and 0.55 s for response and recovery time for the light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. F. Zhong, H. Wang, Z. Wang, Y. Wang, T. He, P. Wu, M. Peng, H. Wang, T. Xu, F. Wang, P. Wang, J. Miao, W. Hu, Nano Res. 14, 1840 (2021)

    Google Scholar 

  2. C. Liu, J. Guo, L. Yu, J. Li, M. Zhang, H. Li, Y. Shi, D. Dai, Light Sci. Appl. 10, 1–21 (2021)

    Google Scholar 

  3. R. Maiti, C. Patil, M.A.S.R. Saadi, T. Xie, J.G. Azadani, B. Uluutku, R. Amin, A.F. Briggs, M. Miscuglio, D. Van Thourhout, S.D. Solares, T. Low, R. Agarwal, S.R. Bank, V.J. Sorger, Nat. Photon. 14, 578 (2020)

    ADS  Google Scholar 

  4. N. Flöry, P. Ma, Y. Salamin, A. Emboras, T. Taniguchi, K. Watanabe, J. Leuthold, L. Novotny, Nat. Nanotechnol. 15, 118 (2020)

    ADS  Google Scholar 

  5. P. Fan, U.K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, M.L. Brongersma, Nat. Photon. 6, 380 (2012)

    ADS  Google Scholar 

  6. H. Yu, S. Shu, X. Xiong, and Q. Xie, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021)

    ADS  Google Scholar 

  7. A. Tuniz, Riv. Del Nuovo Cim. 44, 193 (2021)

    ADS  Google Scholar 

  8. G. Fritz-Popovski, F. Sosada-Ludwikowska, A. Köck, J. Keckes, G.A. Maier, Sci. Rep. 9, 1 (2019)

    Google Scholar 

  9. M. Wang, L. Wan, J. Luo, Nanoscale 13, 3588 (2021)

    Google Scholar 

  10. C. Choi, S. Kwon, T. Cheng, M. Xu, P. Tieu, C. Lee, J. Cai, H.M. Lee, X. Pan, X. Duan, W.A. Goddard, Y. Huang, Nat. Catal. 3, 804 (2020)

    Google Scholar 

  11. W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Nat. Catal. 3, 478 (2020)

    Google Scholar 

  12. Z. Chen, T. Wang, B. Liu, D. Cheng, C. Hu, G. Zhang, W. Zhu, H. Wang, Z. Zhao, J. Gong, J. Am. Chem. Soc. 142, 6878 (2020)

    Google Scholar 

  13. Z. Guo, G. Chen, C. Cometto, B. Ma, H. Zhao, T. Groizard, L. Chen, H. Fan, W.L. Man, S.M. Yiu, K.C. Lau, T.C. Lau, M. Robert, Nat. Catal. 2, 801 (2019)

    Google Scholar 

  14. Y. Xu, M. Cao, Q. Zhang, Mater. Chem. Front. 5, 151 (2021)

    Google Scholar 

  15. S. Sun, D. Mao, J. Yu, Z. Yang, G. Lu, Z. Ma, Catal. Sci. Technol. 5, 3166 (2015)

    Google Scholar 

  16. S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.C. Hung, S.J. Young, B.R. Huang, Sensors Actuators A Phys. 171, 207 (2011)

    Google Scholar 

  17. Z. Bai, Y. Zhang, J. Alloys Compd. 675, 325 (2016)

    Google Scholar 

  18. A. Costas, C. Florica, N. Preda, N. Apostol, A. Kuncser, A. Nitescu, I. Enculescu, Sci. Rep. 9, 1 (2019)

    Google Scholar 

  19. Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, J.L. Sun, A.C.S. Appl, Mater. Interfaces 6, 20887 (2014)

    Google Scholar 

  20. C. Li, M. Kurniawan, D. Sun, H. Tabata, J.J. Delaunay, Nanotechnology 26, 015503 (2014)

    ADS  Google Scholar 

  21. S. Sagadevan, S. Vennila, A.R. Marlinda, Y. Al-Douri, M. Rafie Johan, J. Anita, Lett. Appl. Phys. A Mater. Sci. Process 125, 1 (2019)

    Google Scholar 

  22. P. Squinca, S. Bilatto, A.C. Badino, C.S. Farinas, A.C.S. Sustain, Chem. Eng. 8, 2277 (2020)

    Google Scholar 

  23. H. Zhou, J. Wang, C. Ji, X. Liu, J. Han, M. Yang, J. Gou, J. Xu, Y. Jiang, Carbon N. Y. 143, 844 (2019)

    Google Scholar 

  24. A. Ahmadivand, B. Gerislioglu, Z. Ramezani, Nanoscale 11, 13108 (2019)

    Google Scholar 

  25. M. Tanzid, A. Ahmadivand, R. Zhang, B. Cerjan, A. Sobhani, S. Yazdi, P. Nordlander, N.J. Halas, ACS Photon. 5, 3472 (2018)

    Google Scholar 

  26. A.M. Elsayed, M. Rabia, M. Shaban, A.H. Aly, A.M. Ahmed, Sci. Rep. 11, 17572 (2021)

    ADS  Google Scholar 

  27. H.S.H. Mohamed, M. Rabia, X.G. Zhou, X. Sen Qin, G. Khabiri, M. Shaban, H.A. Younus, S. Taha, Z.Y. Hu, J. Liu, Y. Li, B.L. Su, J. Mater. Sci. Technol. 83, 179 (2021)

    Google Scholar 

  28. H. Meng, W. Yang, K. Ding, L. Feng, Y. Guan, J. Mater. Chem. A 3, 1174 (2014)

    Google Scholar 

  29. M. Shaban, M. Rabia, W. Fathallah, N.A. El-Mawgoud, A. Mahmoud, H. Hussien, O. Said, J. Polym. Environ. 26, 434 (2017)

    Google Scholar 

  30. M.R. Abukhadra, M. Rabia, M. Shaban, F. Verpoort, Adv. Powder Technol. 29, 2501 (2018)

    Google Scholar 

  31. M.S.S. Fadel, M. Rabia, S. Ezzat, N. Mansour, E. Saeed, S.M. Sayyah, J. Nanophoton 12, 016009 (2018). https://doi.org/10.1117/1.JNP.12.016009

    Article  Google Scholar 

  32. A.M. Ahmed, M. Rabia, M. Shaban, RSC Adv. 10, 14458 (2020)

    ADS  Google Scholar 

  33. S. Sivakumar, E. Manikandan, J. Mater. Sci. Mater. Electron. 308(30), 7606 (2019)

    Google Scholar 

  34. A.T. Ravichandran, K. Dhanabalan, A. Vasuhi, R. Chandramohan, S. Mantha, IEEE Trans. Nanotechnol. 14, 108 (2015)

    ADS  Google Scholar 

  35. P. Vikas, J. Datta, P. Shailesh, C. Manik, G. Prsad, P. Sanjay, R. Bharat, S. Shashwati, J. Sens. Technol. 2011, 36 (2011)

    Google Scholar 

  36. H.S.H. Mohamed, M. Rabia, M. Shaban, S. Taha, Mater. Sci. Semicond. Process. 120, 105307 (2020)

    Google Scholar 

  37. S.H. Mohamed, H. Zhao, H. Romanus, F.M. El-Hossary, M. Abo EL-Kassem, M.A. Awad, M. Rabia, Y. Lei, Mater. Sci. Semicond. Process. 105, 104704 (2020)

    Google Scholar 

  38. A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L.V. Besteiro, A.O. Govorov, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Adv. Opt. Mater. 5, 1601031 (2017)

    Google Scholar 

  39. X. Wang, W. Tian, M. Liao, Y. Bando, D. Golberg, Chem. Soc. Rev. 43, 1400 (2014)

    Google Scholar 

  40. A.A. Hussain, B. Sharma, T. Barman, A.R. Pal, A.C.S. Appl, Mater. Interfaces 8, 4258 (2016)

    Google Scholar 

  41. J.T. Abdalla, Y.W. Huang, Q.J. Yu, J.Z. Wang, J.N. Wang, C.L. Yu, S.Y. Gao, S.J. Jiao, D.B. Wang, A.M. Alarabi, A. Abdellah, Mater. Technol. 32, 443 (2017)

    Google Scholar 

  42. F. Mohamed, M. Rabia, M. Shaban, J. Mater. Res. Technol. 9, 4255 (2020)

    Google Scholar 

  43. M. Rabia, M. Shaban, A. Adel, A.A. Abdel-Khaliek, Environ. Prog. Sustain Energy 38, 13171 (2019)

    Google Scholar 

  44. M. Rabia, M. Shaban, B.M. Jibali, A.A. Abdelkhaliek, J. Nanosci. Nanotechnol. 20, 4120 (2020)

    Google Scholar 

  45. Z. Liu, F. Li, S. Li, C. Hu, W. Wang, F. Wang, F. Lin, H. Wang, Sci. Rep. 5, 14420 (2015)

    ADS  Google Scholar 

  46. S. Podder, A.R. Pal, J. Appl. Phys. 126, 083108 (2019)

    ADS  Google Scholar 

  47. R. Jia, D. Zhao, N. Gao, D. Liu, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  48. S. Kunwar, S. Pandit, J.H. Jeong, J. Lee, Nano-Micro Lett. 12, 1 (2020)

    Google Scholar 

  49. S. Noothongkaew, O. Thumthan, K.S. An, Mater. Lett. 218, 274 (2018)

    Google Scholar 

  50. H. Zhao, B. Ouyang, L. Han, Y.K. Mishra, Z. Zhang, Y. Yang, Sci. Rep. 10, 11864 (2020)

    ADS  Google Scholar 

  51. S. Bell, G. Will, J. Bell, Int. J. Hydrog. Energy 38, 6938 (2013)

    Google Scholar 

  52. M. Shaban, M. Rabia, A.M.A. El-Sayed, A. Ahmed, S. Sayed, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  53. M. Rabia, S.H. Mohamed, H. Zhao, M. Shaban, Y. Lei, A.M. Ahmed, J. Porous Mater. 27, 133 (2019)

    Google Scholar 

  54. M. Rabia, H.S.H. Mohamed, M. Shaban, S. Taha, Sci. Rep. 8, 1107 (2018)

    ADS  Google Scholar 

  55. M. Shaban, S. Ali, M. Rabia, J. Mater. Res. Technol. 8, 4510 (2019)

    Google Scholar 

  56. T. Lan, A. Fallatah, E. Suiter, S. Padalkar, Sensors 17, 1944 (2017)

    ADS  Google Scholar 

  57. L. Zheng, K. Hu, F. Teng, X. Fang, Small 13, 1602448 (2017)

    Google Scholar 

  58. L. Zheng, P. Yu, K. Hu, F. Teng, H. Chen, X. Fang, A.C.S. Appl, Mater. Interfaces 8, 33924 (2016)

    Google Scholar 

  59. L. Zheng, F. Teng, Z. Zhang, B. Zhao, X. Fang, J. Mater. Chem. C 4, 10032 (2016)

    Google Scholar 

  60. A. Kalra, S. Vura, S. Rathkanthiwar, R. Muralidharan, S. Raghavan, D.N. Nath, Appl. Phys. Express 11, 064101 (2018)

    ADS  Google Scholar 

  61. K. Liu, M. Sakurai, M. Liao, M. Aono, J. Phys. Chem. C 114, 19835 (2010)

    Google Scholar 

  62. A.A. Hussain, A.R. Pal, D.S. Patil, Appl. Phys. Lett. 104, 193301 (2014)

    ADS  Google Scholar 

  63. L. Jiang, G. Zhou, J. Mi, Z. Wu, Catal. Commun. 24, 48 (2012)

    Google Scholar 

  64. Y.Y. Cai, S.S.E. Collins, M.J. Gallagher, U. Bhattacharjee, R. Zhang, T.H. Chow, A. Ahmadivand, B. Ostovar, A. Al-Zubeidi, J. Wang, P. Nordlander, C.F. Landes, S. Link, ACS Energy Lett. 4, 2458 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research Grant No. (DSR-2021-03-0313).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. A. Hadia or Mohamed Rabia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelazeez, A.A.A., Hadia, N.M.A., Alzaid, M. et al. Development of CuO nanoporous material as a highly efficient optoelectronic device. Appl. Phys. A 128, 321 (2022). https://doi.org/10.1007/s00339-022-05447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05447-7

Keywords

Navigation