Skip to main content
Log in

High electric field-induced relaxor to ferroelectric phase transition in (Bi0.5Na0.3K0.2)TiO3–SrTiO3–(Ba0.8Ca0.2)TiO3 Pb-free piezoelectric ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electric field-induced phase transitions are the most important characteristics of relaxor, ferroelectric and anti-ferroelectric materials, while the origin of this behavior in relaxor materials is poorly understood. In the present study, an electric field dependent on the structural, the dielectric, and the ferroelectric properties of 0.7[(Bi0.5Na0.3K0.2)TiO3]-0.2SrTiO3-0.1(Ba0.8Ca0.2)TiO3](BNKT-ST-BCT) relaxor ceramic has been performed. In the absence of the poling effect, a normal transition from relaxor to para-electric phase occurs at Burns temperature TB ~ 100 °C. However, at high electric field of the poling (E = 50 kV/cm, T = 80 °C, t = 15 min), two-step transitions were found: the first one is a ferroelectric–relaxor transition at depolarization temperature (Td ~ 100 °C), and the second one is a relaxor–para-electric transition at higher temperatures (TB = 150 °C). Increasing the Burns temperature by applying field is due to the residual polarization effect. At lower electric field (E < 15 kV/cm), a relaxor behavior with pinched P–E loop was observed caused by man intrinsic effect, where ST induced phase transition from a non-polar incommensurate to a polar commensurately modulated crystal structure. The sample exhibited a relaxor–ferroelectric phase transition as manifested by a change of the domain structure from polar nano-region PNR with short-range order (SRO) to coarse ferroelectric Lamellar domain with long-range order (LRO) at high applied cycle of electric field above the domain switching field. The change of the domain structure is contributed to domain growth caused by domain wall displacement effect. These results were confirmed by XRD of poled ceramic at different poling conditions (E = 0.0–58 kV/cm) near the phase transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  1. K. Li, X. Li Zhu, X.Q. Liu, X. Ma, M.S. Fu, J. Kroupa, S. Kamba, X.M. Chen, Electric-field-induced phase transition and pinched P-E hysteresis loops in Pb-free ferroelectrics with a tungsten bronze structure. NPG Asia Mater. 10, 71–81 (2018)

    Article  ADS  Google Scholar 

  2. S.O. Kasap, Principles of Electronic Materials and Devices (McGraw-Hill, USA, 2006)

    Google Scholar 

  3. W. Cao et al., Defect dipole induced large recoverable strain and high energystorage density in lead free Na0.5Bi0.5TiO3-based systems. Appl. Phys. Lett. 108, 202902 (2016)

    Article  ADS  Google Scholar 

  4. V. Bobnar, Z. Kutnjak, A. Levstik, Nonlinear dielectric response of relaxor PLZT ceramics in a dc bias electric field. J. Eur. Ceram. Soc. 21, 1319–1322 (2001)

    Article  Google Scholar 

  5. H.L. Du, F.S. Tang, F. Luo, W.C. Zhou, S.B. Qu, Z.B. Pei, Mater. Sci. Eng. B 137, 157 (2007)

    Article  Google Scholar 

  6. J. Fu, R.Z. Zuo, Y. Liu, J. Alloys Compd. 493, 197 (2010)

    Article  Google Scholar 

  7. R. Blinc, J. Dolinˇsek, B. Zalar, C. Filipiˇc, Z. Kutnjak, A. Levstik, R. Pirc, Local polarization distribution and Edwards-Anderson order parameter of relaxor ferroelectrics. Phys. Rev. Lett. 83(2), 424–427 (1999)

    Article  ADS  Google Scholar 

  8. A.J. Bell, J. Phys.: Condens. Matter 5, 8773 (1993)

    ADS  Google Scholar 

  9. A.E. Glazounov, A.K. Tagantsev, Ferroelectrics 221, 57 (1999)

    Article  Google Scholar 

  10. A.E. Glazounov, A.K. Tagantsev, A.J. Bell, Phys. Rev. B 53, 11281 (1996)

    Article  ADS  Google Scholar 

  11. L. Rayleigh, Philos. Mag. 23, 225 (1887)

    Article  Google Scholar 

  12. D.A. Hall, J. Mater. Sci. 36, 4575 (2001)

    Article  ADS  Google Scholar 

  13. G. Viola, Y. Tan, R.A. McKinnon, X. Wei, H. Yan, M.J. Reece, Appl. Phys. Lett. 105, 106 (2014)

    Article  Google Scholar 

  14. B. Dkhil, J.M. Kiat, G. Calvarin, G. Baldinozzi, S.B. Vakhrushev, E. Suard, Local and long range order in the relaxor-ferroelectric compounds PbMg1/3Nb2/3O.3 and PbMg03Nb0.6Ti0.1O3. Phys. Rev. B 65, 024104 (2001)

    Article  ADS  Google Scholar 

  15. G.H. Haertling, C.E. Land, Hot-pressed (Pb, La)(Zr, Ti)O3 ferroelectric ceramics for electrooptic applications. J. Am. Ceram. Soc. 54(1), 1–11 (1971)

    Article  Google Scholar 

  16. Q. Tan, Z. Xu, J.-F. Li, D. Viehland, Role of defect distributions and mobility on ferroelectric phase transformations in lead zirconate titanate. Appl. Phys. Lett. 71, 1062–1064 (1997)

    Article  ADS  Google Scholar 

  17. X. Dai, Z. Xu, J.-F. Li, D. Viehland, Effects of lanthanum modification on rhombohedral Pb(Zr1−xTix)O3 ceramics: part I. Transformation from normal to relaxor ferroelectric behaviors. J. Mater. Res. 11(3), 618–625 (1995)

    Article  ADS  Google Scholar 

  18. D. Viehland, X.H. Dai, J.F. Li, Z. Xu, Effects of quenched disorder on La-modified lead zirconate titanate: long- and short-range ordered structurally incommensurate phases, and glassy polar clusters. J. Appl. Phys. 84, 458–471 (1998)

    Article  ADS  Google Scholar 

  19. J.L. Jones, The use of diffraction in the characterization of piezoelectric materials. J. Electroceram. 19, 67–79 (2007)

    Article  Google Scholar 

  20. G. Viola, D. Verbylo, N. Orlovskaya, M.J. Reece, Mater. Sci Technol. 25(11), 1312 (2009)

    Google Scholar 

  21. A. Pramanick, J.E. Daniels, J.L. Jones, J. Am. Ceram. Soc. 92(10), 2300 (2009)

    Article  Google Scholar 

  22. A.-R. Mahmoud, M.K. Ahmed Aladly, S.A. Gerges, Hussein, High remnant polarization and low coercive feld of (Bi0.5Na0.3K0.2)TiO3-(Ba0.8Ca0.2)TiO3-BiFeO3 ceramics with in situ domain structure at high temperature. J Appl. Phys. A 127, 412 (2021)

    Article  ADS  Google Scholar 

  23. A.-R. Mahmoud, M. Fangary, M. Nassary, O. Hemeda, Ferroelectric-to-non-ergodic relaxor phase transition of (Bi05Na03K02) TiO3– (Ba08Ca02) TiO3 lead-free ceramics by SrTiO3 effect. J Mater Sci Mater Electron (2020). https://doi.org/10.1007/s10854-021-07136-2

    Article  Google Scholar 

  24. J. Paul Praveen, T. Karthik, A.R. Jamesc, E. Chandrakala, S. Asthana, D. Das, J. Eur. Ceramic Soc. 35, 1785–1798 (2015)

    Article  Google Scholar 

  25. Q. Tan, D. Viehland, ac-field-dependent structure-property relationships in La-modified lead zirconate titanate: induced relaxor behaviour and domain breakdown in soft ferroelectrics. Phys. Rev. B 53(21), 14103 (1996)

    Article  ADS  Google Scholar 

  26. W. Jo, J. Daniels, D. Damjanovic, W. Kleemann, J. Rodel, Appl. Phys. Lett. 102, 192903 (2013)

    Article  ADS  Google Scholar 

  27. A.-R. Mahmoud, S.K.S. Parashar, Mater. Sci. Eng. B 24, 13–20 (2019)

    Article  Google Scholar 

  28. A.-R. Mahmoud, A.S. Afify, S.K.S. Parashar, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-018-0542-7

    Article  Google Scholar 

  29. L.-F. Zhu, B.-P. Zhang, J.-Q. Duan, B.-W. Xun, N. Wang, Y.C. Tang, J. Eur. Ceram. Soc. 38, 3463–3471 (2018)

    Article  Google Scholar 

  30. N.A. Pertsev, D.A. Kiselev, I.K. Bdikin, M. Kosec, A.L. Kholkin, Quasi-one-dimensional domain walls in ferroelectric ceramics: evidence fromdomain dynamics and wall roughness measurements. J. Appl. Phys. 11, 052001 (2011)

    Article  ADS  Google Scholar 

  31. H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T. Zhang, Z. Gao, M.J. Reece, The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectrics 1(107), 118 (2011)

    Google Scholar 

  32. X. Zhou, C. Jiang, H. Luo, C. Chen, K. Zhou, D. Zhang, Ceram. Int. 42, 18631–18640 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research grant No. (DSR2020-02-495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Ezzeldien.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasaneen, M.F., Mahmoud, A.Er., Alrowaili, Z.A. et al. High electric field-induced relaxor to ferroelectric phase transition in (Bi0.5Na0.3K0.2)TiO3–SrTiO3–(Ba0.8Ca0.2)TiO3 Pb-free piezoelectric ceramic. Appl. Phys. A 128, 325 (2022). https://doi.org/10.1007/s00339-022-05420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05420-4

Keywords

Navigation