Skip to main content
Log in

Tellurium nanostructures for optoelectronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on fabrication of tellurium nanostructures (TN) that demonstrated promising applications in optoelectronics. Initially, TN were synthesized using a simple, one-step, room temperature, wet-chemical technique. During synthesis, the effect of number of parameters such as precursor concentration, its content, solvent ratios, their pH and reaction time has been investigated at a temperature ~ 120 °C. The obtained product was examined by UV–visible, IR spectroscopy, X-ray diffractometry, electron microscopy and energy-dispersive X-ray spectroscopic characterization techniques. Analysis revealed that TN have profound impact on the structure–property relationship through active and passive participation of Mo catalyst. During its initial growth stages, Te and O bonding gets influenced by Mo to form Mo–O–Te–O and Te–Mo–Te moieties, typically, at 6 h. This has implication onto the structural phase transformation of TN from Te-tube (TT) to Te-flake (TF) and then to TT again. Possible transformation mechanism is explained. Structurally, TN had hexagonal quasi-crystalline atomic arrangement with morphologically thin, transparent, bunched and close-caped TT characteristics having diameter 50–100 nm and length 0.8–2.1 µm, whereas TF is found to be thin, geometrically squared with area ~ 7 to 10 µm2. On their implementation for optoelectronic assessments, over the wavelength range 0.3–2.1 µm (power density ~ 100 mW/cm2), they showed peculiar luminescent and dark IV responses. Relevant photocarrier dynamics has been revealed. TT, typically, showed 160% quantum efficiency, whereas TF ~ 40% is useful for optoelectronic devices. Details are presented.

Graphical abstract

Fabrication and optoelectronic assessments of tellurium nanostructure that showed time-dependent structural phase transformation from tube to flake to tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Zare, Z. Sepehrizadeh, M.A. Faramarzi, M. Soltany-Rezaee-Rad, S. Rezaie, A.R. Shahverdi, Antifungal activity of biogenic tellurium nanoparticles against Candida albicans and its effects on squalene monooxygenase gene expression. Biotechnol. Appl. Biochem. 61(4), 395–400 (2014)

    Article  Google Scholar 

  2. U.K. Gautam, C.N.R. Rao, Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process. J. Mater. Chem. 14(16), 2530–2535 (2004)

    Article  Google Scholar 

  3. E.J. Weidmann, J.C. Anderson, Structure and growth of oriented tellurium thin films. Thin Solid Films 7(3–4), 265–276 (1971)

    Article  ADS  Google Scholar 

  4. A. Von Hippel, Structure and conductivity in the VI b group of the periodic system. J. Chem. Phys. 16(4), 372–380 (1948)

    Article  ADS  Google Scholar 

  5. Z. Liu, Z. Hu, J. Liang, S. Li, Y. Yang, S. Peng, Y. Qian, Size-controlled synthesis and growth mechanism of monodisperse tellurium nanorods by a surfactant-assisted method. Langmuir 20(1), 214–218 (2004)

    Article  Google Scholar 

  6. G. Xi, Y. Peng, W. Yu, Y. Qian, Synthesis, characterization, and growth mechanism of tellurium nanotubes. Cryst. Growth Des. 5(1), 325–328 (2005)

    Article  Google Scholar 

  7. F. Liang, H. Qian, Synthesis of tellurium nanowires and their transport property. Mater. Chem. Phys. 113(2–3), 523–526 (2009)

    Article  Google Scholar 

  8. Z. Liu, S. Li, Y. Yang, Z. Hu, S. Peng, J. Liang, Y. Qian, Shape-controlled synthesis and growth mechanism of one-dimensional nanostructures of trigonal tellurium. New J. Chem. 27(12), 1748–1752 (2003)

    Article  Google Scholar 

  9. S. Sen, U.M. Bhatta, V. Kumar, K.P. Muthe, S. Bhattacharya, S.K. Gupta, J.V. Yakhmi, Synthesis of tellurium nanostructures by physical vapor deposition and their growth mechanism. Cryst. Growth Des. 8(1), 238–242 (2008)

    Article  Google Scholar 

  10. B. Zhang, W. Hou, X. Ye, S. Fu, Y. Xie, 1D Tellurium nanostructures: photothermally assisted morphology-controlled synthesis and applications in preparing functional nanoscale materials. Adv. Func. Mater. 17(3), 486–492 (2007)

    Article  Google Scholar 

  11. H. Park, W. Son, S.H. Lee, S. Kim, J.J. Lee, W. Cho, H.H. Choi, J.H. Kim, Aqueous chemical synthesis of tellurium nanowires using a polymeric template for thermoelectric materials. CrystEngComm 17(5), 1092–1097 (2015)

    Article  Google Scholar 

  12. P. Mohanty, J. Park, B. Kim, Large scale synthesis of highly pure single crystalline tellurium nanowires by thermal evaporation method. J. Nanosci. Nanotechnol. 6(11), 3380–3383 (2006)

    Article  Google Scholar 

  13. Q. Wang, G.-D. Li, Y.-L. Liu, S. Xu, K.-J. Wang, J.-S. Chen, Fabrication and growth mechanism of selenium and tellurium nanobelts through a vacuum vapor deposition route. J. Phys. Chem. C 111(35), 12926–12932 (2007)

    Article  Google Scholar 

  14. R.R. Silva, H.A. Mejia, S.J. Ribeiro, L.K. Shrestha, K. Ariga, O.N. Oliveira, V.R. Camargo, L.J. Maia, C.B. Araújo, Facile synthesis of tellurium nanowires and study of their third-order nonlinear optical properties. J. Braz. Chem. Soc. 28, 58–67 (2017)

    Google Scholar 

  15. T. Zhang, T. Doert, K. Schwedtmann, J.J. Weigand, M. Ruck, Facile synthesis of tellurium nano-and microstructures by trace HCl in ionic liquids. Dalton Trans. 49(6), 1891–1896 (2020)

    Article  Google Scholar 

  16. M. Saxena, A.K. Bera, R. Venkatesh, Wet chemical assisted synthesis of self assembled tellurium nanostructures with enhanced stability. Mater. Lett. 301, 130300 (2021)

    Article  Google Scholar 

  17. J.W. Liu, J.H. Zhu, C.L. Zhang, H.W. Liang, S.H. Yu, Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 132(26), 8945–8952 (2010)

    Article  Google Scholar 

  18. J. Szymczak, S. Legeai, S. Diliberto, S. Migot, N. Stein, C. Boulanger, G. Chatel, M. Draye, Template-free electrodeposition of tellurium nanostructures in a room-temperature ionic liquid. Electrochem. Commun. 24, 57–60 (2012)

    Article  Google Scholar 

  19. H. Zhu, H. Zhang, J. Liang, G. Rao, J. Li, G. Liu, Z. Du, H. Fan, J. Luo, Controlled synthesis of tellurium nanostructures from nanotubes to nanorods and nanowires and their template applications. J. Phys. Chem. C 115(14), 6375–6380 (2011)

    Article  Google Scholar 

  20. W.K. Khalef, T.R. Marzoog, A.D. Faisal, In Synthesis and characterization of tellurium oxide nanoparticles using pulse laser ablation and study their antibacterial activity. J. Phys. Conf. Ser. 1795, 012049 (2021)

    Article  Google Scholar 

  21. F. Arab, M. Mousavi-Kamazani, M. Salavati-Niasari, Synthesis, characterization, and optical properties of Te, Te/TeO2 and TeO2 nanostructures via a one-pot hydrothermal method. RSC Adv. 6(75), 71472–71480 (2016)

    Article  ADS  Google Scholar 

  22. E. Chikukwa, E. Meyer, J. Mbese, N. Zingwe, Colloidal synthesis and characterization of molybdenum chalcogenide quantum dots using a two-source precursor pathway for photovoltaic applications. Molecules 26(14), 4191 (2021)

    Article  Google Scholar 

  23. M.K. Trivedi, R.M. Tallapragada, A. Branton, D. Trivedi, G. Nayak, O. Latiyal, S. Jana, Evaluation of atomic, physical and thermal properties of tellurium powder: impact of biofield energy treatment. J. Electr. Electron. Syst. 4(3) (2015)

  24. N. Fang, Y.-M. Ji, C.-Y. Li, Y.-Y. Wu, C.-G. Ma, H.-L. Liu, M.-X. Li, Synthesis and adsorption properties of [Cu (L) 2 (H2O)] H 2 [Cu (L) 2 (P 2 Mo 5 O 23)]· 4H 2 O/Fe 3 O 4 nanocomposites. RSC Adv. 7(41), 25325–25333 (2017)

    Article  ADS  Google Scholar 

  25. P. Wongkrua, T. Thongtem, S. Thongtem, Synthesis of h-and α-MoO3 by refluxing and calcination combination: phase and morphology transformation, photocatalysis, and photosensitization. J. Nanomater. (2013). https://doi.org/10.1155/2013/702679

    Article  Google Scholar 

  26. S.K. Al-Ani, S.S. Al-Rawi, A.H. Jassim, H.A. Al-Hilli, FTIR spectra of molybdenum tellurite glasses. Iraqi J. Appl. Phys. 2(1–2), 23–25 (2006)

    Google Scholar 

  27. Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, X. Wei, Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature. J. Mater. Chem. 20(12), 2457–2463 (2020)

    Article  Google Scholar 

  28. M. Manikandan, K. Subramani, M. Sathish, S. Dhanuskodi, Hydrothermal synthesis of cobalt telluride nanorods for a high performance hybrid asymmetric supercapacitor. RSC Adv. 10(23), 13632–13641 (2020)

    Article  ADS  Google Scholar 

  29. J.C. Park, S.J. Yun, H. Kim, J.-H. Park, S.H. Chae, S.-J. An, J.-G. Kim, S.M. Kim, K.K. Kim, Y.H. Lee, Phase-engineered synthesis of centimeter-scale 1T′-and 2H-molybdenum ditelluride thin films. ACS Nano 9(6), 6548–6554 (2015)

    Article  Google Scholar 

  30. D. Pokhrel, E. Bastola, A.B. Phillips, M.J. Heben, R.J. Ellingson, Aspect ratio controlled synthesis of tellurium nanowires for photovoltaic applications. Mater. Adv. 1(8), 2721–2728 (2020)

    Article  Google Scholar 

  31. M. Hinojosa, I. García, I. Rey-Stolle, C. Algora, Inverted rear-heterojunction GaInP solar cells using Te memory effect. Solar Energy Mater. Solar Cells 205, 110235 (2020)

    Article  Google Scholar 

  32. J. Chen, J. Zhu, P. Li, X.-M. Wu, R. Liu, J. Wan, T.-L. Ren, Fabricating in-plane MoTe2 pn homojunction photodetector using laser-induced p-type doping. IEEE Trans. Electron Dev. 68, 4485 (2021)

    Article  ADS  Google Scholar 

  33. W. Xu, J. Song, L. Sun, J. Yang, W. Hu, Z. Ji, S.H. Yu, Structural, electrical, and photoconductive properties of individual single-crystalline tellurium nanotubes synthesized by a chemical route: doping effects on electrical structure. Small 4(7), 888–893 (2008)

    Article  Google Scholar 

  34. H. Li, P. Zhang, C. Liang, J. Yang, M. Zhou, X. Lu, G. Hope, Facile electrochemical synthesis of tellurium nanorods and their photoconductive properties. Cryst. Res. Technol. 47(10), 1069–1074 (2012)

    Article  Google Scholar 

  35. G. Carotenuto, M. Palomba, S. De Nicola, G. Ambrosone, U. Coscia, Structural and photoconductivity properties of tellurium/PMMA films. Nanoscale Res. Lett. 10(1), 1–8 (2015)

    Article  Google Scholar 

  36. U. Coscia, G. Ambrosone, M. Palomba, S. Binetti, A. Le Donne, D. Siliqi, G. Carotenuto, Photoconductivity of tellurium-poly (methyl methacrylate) in the ultraviolet–visible-near infrared range. Appl. Surf. Sci. 457, 229–234 (2018)

    Article  ADS  Google Scholar 

  37. P. Li, Mid-infrared photoconductivity spectra of single tellurium nanowires. J. Appl. Phys. 128(6), 063105 (2020)

    Article  ADS  Google Scholar 

  38. M.L. Gaur, V.M. Bhuse, K.R. Sanadi, K.C. Rathod, U.B. Barache, S.H. Gaikwad, Cobalt selenide thin film: photovoltaic and impedance spectral studies by simple chemical grown technique. J. Mater. Sci. Mater. Electron. 32(22), 26588–26595 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Prof. (Dr.) Raghavendra P. Tiwari, Vice-chancellor, and Prof. (Dr.) Rama Krishna Wusrika, Dean Academics, CU Punjab, Bathinda. PR and PA are thankful to Nilesh G. Saykar for helping in recording I–V data. Author Pinki Rani also thanks to University grant commission, India, for providing the JRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant S. Alegaonkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, P., Alegaonkar, A.P., Mahapatra, S.K. et al. Tellurium nanostructures for optoelectronic applications. Appl. Phys. A 128, 346 (2022). https://doi.org/10.1007/s00339-022-05405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05405-3

Keywords

Navigation