Skip to main content
Log in

Improving thermoelectric performance of Fe2VAl-based Heusler compounds via high-pressure torsion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Heusler-type Fe2V0.90+xTa0.10Al1−x alloys have been processed by high-pressure torsion (HPT) to improve the thermoelectric performance via a significant decrease in thermal conductivity. Before HPT processing, the x = 0.08 alloy (Fe2V0.98Ta0.10Al0.92) has a thermal conductivity of 6.0 W m−1 K−1 at 300 K and a dimensionless figure of merit up to ZT = 0.29 at 400 K. Due to HPT deformation, the thermal conductivity decreases to 3.0 W m−1 K−1 at 300 K, and even after annealing to recover the L21 ordering, a low value of 3–4 W m−1 K−1 can be maintained without significantly deteriorating the power factor. The grain boundary segregation of Ta prevents grain coarsening during annealing, resulting in an ultra-fine grained structure with grain sizes less than 100 nm. Grain refinement, as well as V/Al off-stoichiometry and heavy element Ta doping, are effective in reducing a lattice thermal conductivity, which can reach 1.3 W m−1 K−1 at 350 K. The thermoelectric performance of Fe2V0.98Ta0.10Al0.92 is improved to ZT = 0.37 around 400 K, one of the highest values ever achieved for bulk Fe2VAl-based thermoelectric materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, U. Mizutani, Semiconductorlike behavior of electrical resistivity in Heusler-type Fe2VAl compound. Phys. Rev. Lett. 79, 1909–1912 (1997)

    Article  ADS  Google Scholar 

  2. E. Alleno, Review of the thermoelectric properties in nanostructured Fe2VAl. Metals 8, 864 (2018)

    Article  Google Scholar 

  3. S. Anand, R. Gurunathan, T. Soldi, L. Borgsmiller, R. Orenstein, G.J. Snyder, Thermoelectric transport of semiconductor full-Heusler VFe2Al. J. Mater. Chem. C 8, 10174–10184 (2020)

    Article  Google Scholar 

  4. G.Y. Guo, G.A. Botton, Y. Nishino, Electronic structure of possible 3d heavy-fermion compound Fe2VAl. J. Phys. Condens. Matter. 10, L119–L126 (1998)

    Article  ADS  Google Scholar 

  5. D.J. Singh, I.I. Mazin, Electronic structure, local moments, and transport in Fe2VAl. Phys. Rev. B 57, 14352–14356 (1998)

    Article  ADS  Google Scholar 

  6. R. Weht, W.E. Pickett, Excitonic correlations in the intermetallic Fe2VAl. Phys. Rev. B 58, 6855–6861 (1998)

    Article  ADS  Google Scholar 

  7. H. Kato, M. Kato, Y. Nishino, U. Mizutani, S. Asano, Effect of silicon substitution on thermoelectric properties of Heusler-type Fe2VAl alloy. J. Jpn. Inst. Met. Mater. 65, 652–656 (2001)

    Article  Google Scholar 

  8. Y. Nishino, S. Deguchi, U. Mizutani, Thermal and transport properties of the Heusler-type Fe2VAl1−xGex (0 ≤ x ≤ 0.20) alloys: effect of doping on lattice thermal conductivity, electrical resistivity, and Seebeck coefficient. Phys Rev B 74, 115115 (2006)

    Article  ADS  Google Scholar 

  9. C.S. Lue, C.F. Chen, J.Y. Lin, Y.T. Yu, Y.K. Kuo, Thermoelectric properties of quaternary Heusler alloys Fe2VAl1−xSix. Phys. Rev. B 75, 064204 (2007)

    Article  ADS  Google Scholar 

  10. M. Vasundhara, V. Srinivas, V.V. Rao, Electronic transport in Heusler-type Fe2VAl1−xMx alloys (M = B, In, Si). Phys. Rev. B. 77, 224415 (2008)

    Article  ADS  Google Scholar 

  11. E.J. Skoug, C. Zhou, Y. Pei, D.T. Morelli, High thermoelectric power factor near room temperature in full Heusler alloys. J. Electron. Mater. 38, 1221–1223 (2009)

    Article  ADS  Google Scholar 

  12. M. Mikami, Y. Kinemuchi, K. Ozaki, Y. Terazawa, T. Takeuchi, Thermoelectric properties of tungsten-substituted Heusler Fe2VAl alloy. J. Appl. Phys. 111, 093710 (2012)

    Article  ADS  Google Scholar 

  13. Y. Nishino, H. Kato, M. Kato, U. Mizutani, Effect of off-stoichiometry on the transport properties of the Heusler-type Fe2VAl compound. Phys. Rev. B 63, 233303 (2001)

    Article  ADS  Google Scholar 

  14. C.S. Lue, Y.-K. Kuo, Thermoelectric properties of the semimetallic Heusler compounds Fe2−xV1+xM (M = Al, Ga). Phys. Rev. B 66, 085121 (2002)

    Article  ADS  Google Scholar 

  15. Y. Nishino, Y. Tamada, Doping effects on thermoelectric properties of the off-stoichiometric Heusler compounds Fe2−xV1+xAl. J. Appl. Phys. 115, 123707 (2014)

    Article  ADS  Google Scholar 

  16. H. Miyazaki, S. Tanaka, N. Ide, K. Soda, Y. Nishino, Thermoelectric properties of Heusler-type off-stoichiometric Fe2V1+xAl1−x alloys. Mater. Res. Express 1, 015901 (2014)

    Article  ADS  Google Scholar 

  17. H. Muta, T. Kanemitsu, K. Kurosaki, S. Yamanaka, High-temperature thermoelectric properties of Nb-doped MNiSn (M = Ti, Zr) half-Heusler compound. J. Alloys Compd. 469, 50–55 (2009)

    Article  Google Scholar 

  18. T. Berry, C. Fu, G. Auffermann, G.H. Fecher, W. Schnelle, F. Serrano-Sanchez, Y. Yue, H. Liang, C. Felser, Enhancing thermoelectric performance of TiNiSn half-Heusler compounds via modulation doping. Chem. Mater. 29, 7042–7048 (2017)

    Article  Google Scholar 

  19. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011)

    Article  Google Scholar 

  20. K. Kambe, H. Udono, Convenient melt-growth method for thermoelectric Mg2Si. J. Electron. Mater. 43, 2212–2217 (2014)

    Article  ADS  Google Scholar 

  21. T. Mori, N. Ide, Y. Nishino, Thermoelectric properties of p-type Fe2(V1–xyTixTay)Al alloys. J. Jpn. Inst. Met. Mater. 72, 593–598 (2008)

    Article  Google Scholar 

  22. K. Renard, A. Mori, Y. Yamada, S. Tanaka, H. Miyazaki, Y. Nishino, Thermoelectric properties of the Heusler-type Fe2VTaxAl1−x alloys. J. Appl. Phys. 115, 033707 (2014)

    Article  ADS  Google Scholar 

  23. C.M. Bhandari, in Thermoelectric Handbook: Micro to Nano, ed. by D.M. Rowe (CRC Press, Boca Raton, 2005), pp. 1–15 (Chapter 14)

  24. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, B. Baudelet, Structure and deformation behaviour of armco iron subjected to severe plastic deformation. Acta Mater. 44, 4705–4712 (1996)

    Article  ADS  Google Scholar 

  25. G. Rogl, D. Setman, E. Schafler, J. Horky, M. Kerber, M. Zehetbauer, M. Falmbigl, P. Rogl, E. Royanian, E. Bauer, High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation. Acta Mater. 60, 2146–2157 (2012)

    Article  ADS  Google Scholar 

  26. G. Rogl, M.J. Zehetbauer, P.F. Rogl, The effect of severe plastic deformation on thermoelectric performance of skutterudites, half-Heuslers and Bi-tellurides. Mater. Trans. 60, 2071–2085 (2019)

    Article  Google Scholar 

  27. G. Rogl, S. Ghosh, L. Wang, J. Bursik, A. Grytsiv, M. Kerber, E. Bauer, R.C. Mallik, X.-Q. Chen, M. Zehetbauer, P. Rogl, Half-Heusler alloys: enhancement of ZT after severe plastic deformation (ultra-low thermal conductivity). Acta Mater. 183, 285–300 (2020)

    Article  ADS  Google Scholar 

  28. S. Masuda, K. Tsuchiya, J. Qiang, H. Miyazaki, Y. Nishino, Effect of high-pressure torsion on the microstructure and thermoelectric properties of Fe2VAl-based compounds. J. Appl. Phys. 124, 035106 (2018)

    Article  ADS  Google Scholar 

  29. F. Garmroudi, A. Riss, M. Parzer, N. Reumann, H. Müller, E. Bauer, S. Khmelevskyi, R. Podloucky, T. Mori, K. Tobita, Y. Katsura, K. Kimura, Boosting the thermoelectric performance of Fe2VAl-type Heusler compounds by band engineering. Phys. Rev. B 103, 085202 (2021)

    Article  ADS  Google Scholar 

  30. F. Garmroudi, M. Parzer, A. Riss, N. Reumann, B. Hinterleitner, K. Tobita, Y. Katsura, K. Kimura, T. Mori, E. Bauer, Solubility limit and annealing effects on the microstructure and thermoelectric properties of Fe2V1−xTaxAl1−ySiy Heusler compounds. Acta Mater. 212, 116867 (2021)

    Article  Google Scholar 

  31. T. Takeuchi, Y. Terazawa, Y. Furuta, A. Yamamoto, M. Mikami, Effect of heavy element substitution and off-stoichiometric composition on thermoelectric properties of Fe2VAl-based Heusler phase. J. Electron. Mater. 42, 2084–2090 (2013)

    Article  ADS  Google Scholar 

  32. E. Nishibori, M. Takata, K. Kato, M. Sakata, Y. Kubota, S. Aoyagi, Y. Kuroiwa, M. Yamakata, N. Ikeda, The large Debye-Scherrer camera installed at SPring-8 BL02B2 for charge density studies. Nucl. Instrum. Method Phys. Res. Sect. A 467–468, 1045–1048 (2001)

    Article  ADS  Google Scholar 

  33. F. Izumi, K. Momma, Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15–20 (2007)

    Article  Google Scholar 

  34. S. Maier, S. Denis, S. Adam, J.-C. Crivello, J.-M. Joubert, E. Alleno, Order-disorder transitions in the Fe2VAl Heusler alloy. Acta Mater. 121, 126–136 (2016)

    Article  ADS  Google Scholar 

  35. K. Lücke, K. Detert, A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities. Acta Metall. 5, 628–637 (1957)

    Article  Google Scholar 

  36. J.W. Cahn, The impurity-drag effect in grain boundary motion. Acta Metall. 10, 789–798 (1962)

    Article  Google Scholar 

  37. K. Lücke, H.P. Stüwe, On the theory of impurity controlled grain boundary motion. Acta Metall. 19, 1087–1099 (1971)

    Article  Google Scholar 

  38. H.J. Goldsmid, The thermal conductivity of bismuth telluride. Proc. Phys. Soc. B 69, 203–209 (1956)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Japan Society for the Promotion of Science provided funding for this study through Grant-in-Aid for Scientific Research (C) 17K06771 and 20K05060. The Japan Synchrotron Radiation Research Institute approved the use of SR-XRD measurements at SPring-8 (Proposal Nos. 2018B1397 and 2019A1469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Nishino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuta, K., Tsuchiya, K., Miyazaki, H. et al. Improving thermoelectric performance of Fe2VAl-based Heusler compounds via high-pressure torsion. Appl. Phys. A 128, 184 (2022). https://doi.org/10.1007/s00339-022-05329-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05329-y

Keywords

Navigation