Skip to main content
Log in

Removal mechanisms of nanosecond pulsed laser cleaning of blue and red polyurethane paint

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, laser cleaning of blue and red polyurethane paint on aluminum alloy surface were investigated by using a nanosecond pulsed laser at 1.8, 3.2 and 8.0 J/cm2. The surface topography after laser cleaning was analyzed by confocal laser scanning microscope (CLSM) and field emission scanning electron microscopy (SEM), and the paint removal process was recorded by high-speed camera (HSC) and spectrophotometer. It was found that the cleaning results and phenomena of the two paints were significantly different. After cleaned at 1.8 J/cm2, the blue residual paint is a uniform and flat paint layer while the red residual paint presents a loose mesh morphology. Although both red paint and blue paint could be removed at 3.2 and 8.0 J/cm2, the surface of the substrate shows different topography. It could be observed by HSC that the blue paint detached from the substrate by being vaporized and the red paint was disintegrated into pieces and ejected from the substrate. This phenomenon was caused by the difference in the absorption coefficient of the two paints to the laser. To illustrate this, an energy distribution model was established considering Beer-Lambert’s law and the temperature distribution of paint and thermal stress of substrate were calculated. Under laser irradiation, blue paint was more likely to be ablated and vaporized, while red paint was subject to greater thermal stress. For blue paint removal, vaporization, spallation and combustion are the dominated mechanisms and the red paint was mainly erupted by thermal stress of substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.M. Mostafa, A.A. Menazea, Laser-assisted for preparation ZnO/CdO thin film prepared by pulsed laser deposition for catalytic degradation. Radiat. Phys. Chem. 176, 109020 (2020)

    Article  Google Scholar 

  2. A.A. Menazea, N.S. Awwad, Antibacterial activity of TiO2 doped ZnO composite synthesized via laser ablation route for antimicrobial application. J. Mater. Res. Technol. 9, 9434–9441 (2020)

    Article  Google Scholar 

  3. S.M. Bedair, H.P. Smith, Atomically clean surfaces by pulsed laser bombardment. J. Appl. Phys. 40, 4776–4781 (1969)

    Article  ADS  Google Scholar 

  4. Y. Koh, I. Sarady, Removal of adhesives and coatings on iron artifacts using pulsed TEA CO2 and Nd:YAG lasers. Laser Tech. Syst. Art Conserv. Int. Soc. Opt. Photonics. (2001)

  5. G. Zhu, S. Wang, W. Cheng, Y. Ren, D. Wen, Corrosion and wear performance of aircraft skin after laser cleaning, Opt. Laser Technol. 132, 106475 (2020)

  6. Q.H. Tang, D. Zhou, Y.L. Wang, G.F. Liu, Laser cleaning of sulfide scale on compressor impeller blade. Appl. Surf. Sci. 355, 334–340 (2015)

    Article  ADS  Google Scholar 

  7. G.X. Chen, T.J. Kwee, K.P. Tan, Y.S. Choo, M.H. Hong, Laser cleaning of steel for paint removal. Appl. Phys. A 101, 249–253 (2010)

    Article  ADS  Google Scholar 

  8. M.K.A. Abdul, R.M.S. Jaafar, A.A. Rahman, S.A. Saidi, Identification of optimum operatives parameters for Pulse Nd:YAG laser in paint removal on different types of car coated substrate. Int. J. Edu. Res. 2, 47–64 (2014)

    Google Scholar 

  9. M.K.A.A. Razab, M.S. Jaafar, A.A. Rahman, S.A. Saidi, Estimation of threshold fluence, absorption coefficient and thermal loading of car coated substrate in laser paint removal. App. Mec. Mat. 554, 439–443 (2014)

    Article  Google Scholar 

  10. Y. Lu, L. Yang, Y. Wang, H. Chen, B. Guo, Z. Tian, Paint Removal on the 5A06 aluminum alloy using a continuous wave fiber laser. Coatings 9, 488 (2019)

    Article  Google Scholar 

  11. Z. Li, D. Zhang, X. Su, S. Yang, J. Xu, R. Ma, D. Shan, B. Guo, Removal mechanism of surface cleaning on TA15 titanium alloy using nanosecond pulsed laser. Opt. Laser Technol. 139, 106998 (2021)

    Article  Google Scholar 

  12. X. Xie, Q. Huang, J. Long, Q. Ren, S. Liu, A new monitoring method for metal rust removal states in pulsed laser derusting via acoustic emission techniques. J. Mater. Process. Tech. 275, 116321 (2019)

    Article  Google Scholar 

  13. Y. Lu, Y. Ding, M. Wang, L. Yang, Y. Wang, An environmentally friendly laser cleaning method to remove oceanic micro-biofoulings from AH36 steel substrate and corrosion protection. J. Clean. Prod. 314, 127961 (2021)

    Article  Google Scholar 

  14. G. Zhang, X. Hua, Y. Huang, Y. Zhang, F. Li, C. Shen, J. Cheng, Investigation on mechanism of oxide removal and plasma behavior during laser cleaning on aluminum alloy. Appl. Surf. Sci. 506, 144666 (2020). https://doi.org/10.1016/j.apsusc.2019.144666

    Article  Google Scholar 

  15. H. Li, S. Costil, V. Barnier, R. Oltra, O. Heintz, C. Coddet, Surface modifications induced by nanosecond pulsed Nd:YAG laser irradiation of metallic substrates. Surf. Coat. Tech. 201, 1383–1392 (2006)

    Article  Google Scholar 

  16. K.G. Watkins, Mechanisms of laser cleaning. Proc. SPIE-The Int. Soc. Opt. Eng. 3888, 165–174 (2000)

    ADS  Google Scholar 

  17. F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, J.M. Weulersse, Laser fluence, repetition rate and pulse duration effects on paint ablation. Appl. Surf. Sci. 252, 2131–2138 (2006)

    Article  ADS  Google Scholar 

  18. M. Kumar, P. Bhargava, K.A. Biswas, S. Sahu, Epoxy-paint stripping using TEA CO2 laser: determination of threshold fluence and the process parameters. Opt. Laser Technol. 46, 29–36 (2013)

    Article  ADS  Google Scholar 

  19. X. Li, Q. Zhang, X. Zhou, D. Zhu, Q. Liu, The influence of nanosecond laser pulse energy density for paint removal. Optik 156, 841–846 (2017)

    Article  ADS  Google Scholar 

  20. H. Zhao, Y. Qiao, D. Xian, S. Wang, Q. Zhang, Y. Zang, X. Liu, Laser cleaning performance and mechanism in stripping of Polyacrylate resin paint. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-03551-0

    Article  Google Scholar 

  21. J.H. Brannon, A.C. Tam, R.H. Kurth, Pulsed laser stripping of polyurethane-coated wires: a comparison of KrF and CO2 lasers. J. Appl. Phys. 70, 3881–3886 (1991)

    Article  ADS  Google Scholar 

  22. D.E. Roberts, Pulsed laser coating removal by detachment and ejection. Appl. Phys. A 79, 1067–1070 (2004)

    Article  ADS  Google Scholar 

  23. Y.F. Lu, Laser-induced temperature rise in anisotropic substrates. J. Appl. Phys. 72, 4893–4900 (1992)

    Article  ADS  Google Scholar 

  24. A.V. Bulgakov, N.M. Bulgakova, Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma. Quantum Electron 29, 433–437 (1999)

    Article  ADS  Google Scholar 

  25. L. Yue, Z. Wang, L. Li, Modeling and simulation of laser cleaning of tapered micro-slots with different temporal pulses. Opt. Laser Technol. 45, 533–539 (2013)

    Article  ADS  Google Scholar 

  26. B. Majaron, L. ŠuŠterči, M. Lukač, U. Skalerič, N. Funduk, Heat diffusion and debris screening in Er: YAG laser ablation o4f hard biological tissues. Appl. Phys. B. 66, 479–487 (1998)

    Article  ADS  Google Scholar 

  27. Y.G. Yingling, P.F. Conforti, B.J. Garrison, Theoretical investigation of laser pulse width dependence in a thermal confinement regime. Appl. Phys. A. 79, 4–6 (2004)

    Article  Google Scholar 

  28. F. Brygo, A. Semerok, R. Oltra, J. Weulersse, S. Fomichev, Laser heating and ablation at high repetition rate in thermal confinement regime. Appl. Surf. Sci. 252, 8314–8318 (2006)

    Article  ADS  Google Scholar 

  29. A. Lamikiz, J.A. Sánchez, L.N.L. de Lacalle, J.L. Arana, Laser polishing of parts built up by selective laser sintering. Int. J. Mach. Tool. Manu. 47, 2040–2050 (2007)

    Article  Google Scholar 

  30. T.L. Perry, D. Werschmoeller, X. Li, F.E. Pfefferkorn, N.A. Duffie, Pulsed laser polishing of micro-milled Ti6Al4V samples. J. Manuf. Process. 11, 74–81 (2009)

    Article  Google Scholar 

  31. G. Raciukaitis, M. Brikas, P. Gecys, M. Gedvilas, Accumulation effects in laser ablation of metals with high-repetition-rate lasers, Int. Soc. Opt. Photonics. (2008)

  32. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express. 13, 4708–4716 (2005)

    Article  ADS  Google Scholar 

  33. F. Bauer, A. Michalowski, T. Kiedrowski, S. Nolte, Heat accumulation in ultra-short pulsed scanning laser ablation of metals. Opt. Express. 23, 1035 (2015)

    Article  ADS  Google Scholar 

  34. J. Han, X. Cui, S. Wang, G. Feng, G. Deng, R. Hu, Laser effects based optimal laser parameter identifications for paint removal from metal substrate at 1064nm: a multi-pulse model. J. Mod. Optic. 64, 1–13 (2017)

    Article  ADS  Google Scholar 

  35. J.S. Chickos, W.E. Acree, J.F. Liebman, Estimating solid-liquid phase change enthalpies and entropies. J. Phys. Chem. Ref. Data. 28, 1535–1673 (1999)

    Article  ADS  Google Scholar 

  36. J.S. Chickos, Enthalpies of vaporization of organic and organometallic compounds, 1880–2002. J. Phys. Chem. Ref. Data. 32, 519–878 (2003)

    Article  ADS  Google Scholar 

  37. Z. Zhiyan, Z. Jingyuan, W. Yibo, Z. Shusen, L. Xuechun, L. Xinyang, Removal of paint layer by layer using a 20 kHz 140 ns quasi-continuous wave laser. Optik 174, 46–55 (2018)

    Article  ADS  Google Scholar 

  38. Y. Lu, L. Yang, M. Wang, Y. Wang, Improved thermal stress model and its application in ultravioletnanosecond laser cleaning of painting. Appl. Opt. 59(25), 7652–9 (2020)

    Article  ADS  Google Scholar 

  39. Z. Tian, Z. Lei, X. Chen, Y. Chen, L. Zhang, J. Bi, J. Liang, Nanosecond pulsed fiber laser cleaning of natural marine micro-biofoulings from the surface of aluminum alloy. J. Clean. Prod. 244, 118724 (2020)

    Article  Google Scholar 

  40. Y.F. Lu, W.D. Song, B.W. Ang, M.H. Hong, D.S.H. Chan, T.S. Low, A theoretical model for laser removal of particles from solid surfaces. Appl. Phys. A 65, 9–13 (1997)

    Article  ADS  Google Scholar 

  41. Y. Lu, L. Yang, M. Wang, Y. Wang, Simulation of nanosecond laser cleaning the paint based on the thermal stress. Optik. 227, 165589 (2021)

    Article  ADS  Google Scholar 

  42. Y.F. Lu, M. Takai, S. Komuro, T. Shiokawa, Y. Aoyagi, Surface cleaning of metals by pulsed-laser irradiation in air. Appl. Phys. A 59, 281–288 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Guangdong Province Introduction of Innovative R&D Team (Grant No. 2018B090905003) and the National Natural Science Foundation of China (Grant No. U19A2077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xu or Bin Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 12756 KB)

Supplementary file2 (MP4 6376 KB)

Supplementary file3 (MP4 7125 KB)

Supplementary file4 (MP4 8119 KB)

Supplementary file5 (MP4 13638 KB)

Supplementary file6 (MP4 8381 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Xu, J., Li, Z. et al. Removal mechanisms of nanosecond pulsed laser cleaning of blue and red polyurethane paint. Appl. Phys. A 128, 170 (2022). https://doi.org/10.1007/s00339-022-05296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05296-4

Keywords

Navigation