Skip to main content
Log in

Influence of h-BN on electronic properties of GeS/InSe heterojunction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Constructing van der Waals heterojunctions can enhance two-dimensional (2D) materials with desired properties and greatly extend the applications of the original materials. Here, we implement hexagonal boron nitride (h-BN) layers in between a GeS/InSe heterojunction. We construct three types of heterojunctions GeS/InSe, GeS/h-BN/InSe and GeS/TB (two layers of h-BN)/InSe. It can be seen that the insertion of h-BN causes the increase of the bandgap of the heterojunctions. The bandgaps of GeS/InSe, GeS/h-BN/InSe and GeS/TB/InSe are 0.35, 0.37 and 0.51 eV, respectively. Furthermore, the external electric field can modulate the electronic structure of heterojunctions, consequently the bandgaps. The h-BN layers suppress the interlayer coupling and effectively separates the charges. Inserting h-BN reduces the absorption coefficient of the heterojunctions, but the external electric field can effectively improve the absorption coefficients of GeS/h-BN/InSe and GeS/TB/InSe heterojunctions. Therefore, our proposed method of using the two-dimensional insulator h-BN to modulate the physical properties of the heterojunction provides a useful way for the development of high-performance optoelectronic devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li, N. Yang, B. Chen, H. Zhang, Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem. Rev. 118, 6409–6455 (2018)

    Article  Google Scholar 

  2. X. Chia, M. Pumera, Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921 (2018)

    Article  Google Scholar 

  3. K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas, Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett. 3, 482–495 (2018)

    Article  Google Scholar 

  4. Z. Dai, L. Liu, Z. Zhang, Strain engineering of 2D materials: issues and opportunities at the interface. Adv. Mater. 31, 1805417 (2019)

    Article  Google Scholar 

  5. D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018)

    Article  Google Scholar 

  6. S. Lei, X. Wang, B. Li, J. Kang, Y. He, A. George, L. Ge, Y. Gong, P. Dong, Z. Jin, Surface functionalization of two-dimensional metal chalcogenides by Lewis acid–base chemistry. Nat. Nanotechnol. 11, 465 (2016)

    Article  ADS  Google Scholar 

  7. P. Luo, F. Zhuge, Q. Zhang, Y. Chen, L. Lv, Y. Huang, H. Li, T. Zhai, Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horizons 4, 26–51 (2019)

    Article  ADS  Google Scholar 

  8. C.R. Paul Inbaraj, V.K. Gudelli, R.J. Mathew, R.K. Ulaganathan, R. Sankar, H.Y. Lin, H.-I. Lin, Y.-M. Liao, H.-Y. Cheng, K.-H. Lin, Sn-Doping Enhanced Ultrahigh Mobility In1–x Sn x Se Phototransistor, ACS applied materials & interfaces 11, 24269–24278 (2019).

  9. X. Liu, M.C. Hersam, Interface characterization and control of 2D materials and heterostructures. Adv. Mater. 30, 1801586 (2018)

    Article  Google Scholar 

  10. F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 41, 9–20 (2020)

    Article  Google Scholar 

  11. Y. Yan, D. Zhai, Y. Liu, J. Gong, J. Chen, P. Zan, Z. Zeng, S. Li, W. Huang, P. Chen, van der Waals heterojunction between a bottom-up grown doped graphene quantum dot and graphene for photoelectrochemical water splitting. ACS Nano 14, 1185–1195 (2020)

    Article  Google Scholar 

  12. R. Pan, J. Han, X. Zhang, Q. Han, X. Liu, J. Gou, Y. Jiang, J. Wang, Excellent performance in vertical graphene-C60-graphene heterojunction phototransistors with a tunable bi-directionality. Carbon 162, 375–381 (2020)

    Article  Google Scholar 

  13. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014)

    Article  Google Scholar 

  14. A. Carvalho, M. Wang, X. Zhu, A.S. Rodin, H. Su, A.H.C. Neto, Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 1–16 (2016)

    Article  Google Scholar 

  15. L. Kou, C. Chen, S.C. Smith, Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6, 2794–2805 (2015)

    Article  Google Scholar 

  16. X. Zhang, S.Y. Teng, A.C.M. Loy, B.S. How, W.D. Leong, X. Tao, Transition metal dichalcogenides for the application of pollution reduction: a review. Nanomaterials 10, 1012 (2020)

    Article  Google Scholar 

  17. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis, Advanced Materials (2020).

  18. D. Geng, H.Y. Yang, Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides. Adv. Mater. 30, 1800865 (2018)

    Article  Google Scholar 

  19. C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)

    Article  Google Scholar 

  20. K. Novoselov, o.A. Mishchenko, o.A. Carvalho, A.C. Neto, 2D materials and van der Waals heterostructures, Science 353, (2016).

  21. J. Zhong, B. Wu, Y. Madoune, Y. Wang, Z. Liu, Y. Liu, PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance, Nano Research 1–8 (2021).

  22. R. Hu, Y. Sun, C. An, X. Ma, J. Zhang, J. Liu, Visible to near-infrared photodetector based on SnSe2/WSe2 heterojunction with potential application in artificial visual neuron, Nanotechnology (2021).

  23. R. Frisenda, A.J. Molina-Mendoza, T. Mueller, A. Castellanos-Gomez, H.S. van der Zant, Atomically thin p–n junctions based on two-dimensional materials. Chem. Soc. Rev. 47, 3339–3358 (2018)

    Article  Google Scholar 

  24. W. Feng, W. Zheng, X. Chen, G. Liu, W. Cao, P. Hu, Solid-state reaction synthesis of a InSe/CuInSe2 lateral p–n heterojunction and application in high performance optoelectronic devices. Chem. Mater. 27, 983–989 (2015)

    Article  Google Scholar 

  25. F. Li, X. Liu, Y. Wang, Y. Li, Germanium monosulfide monolayer: a novel two-dimensional semiconductor with a high carrier mobility. J. Mater. Chem. C 4, 2155–2159 (2016)

    Article  Google Scholar 

  26. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)

    Article  ADS  Google Scholar 

  27. R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T. Taniguchi, Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011)

    Article  Google Scholar 

  28. J. Perdew, K. Burke, M. Ernzerhof, Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998)

    Article  ADS  Google Scholar 

  29. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  30. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  Google Scholar 

  31. W. Zachariasen, The crystal lattice of germano sulphide GeS. Phys. Rev. 40, 917 (1932)

    Article  ADS  Google Scholar 

  32. Y.-M. Ding, J.-J. Shi, C. Xia, M. Zhang, J. Du, P. Huang, M. Wu, H. Wang, Y.-L. Cen, S.-H. Pan, Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure. Nanoscale 9, 14682–14689 (2017)

    Article  Google Scholar 

  33. H.L. Zhuang, R.G. Hennig, Single-layer group-III monochalcogenide photocatalysts for water splitting. Chem. Mater. 25, 3232–3238 (2013)

    Article  Google Scholar 

  34. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5, 8326 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation Joint Fund Key Project under Grant No. U1865206, National Science and Technology Major Project under Grant No. 2017- VII-0012-0107, Guangdong Province Key Area R&D Program under Grant No. 2019B090909002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoan Bian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Jing, S., Chen, W. et al. Influence of h-BN on electronic properties of GeS/InSe heterojunction. Appl. Phys. A 128, 141 (2022). https://doi.org/10.1007/s00339-022-05283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05283-9

Keywords

Navigation