Skip to main content
Log in

Evaluation of cold plasma effect to achieve fullerene and zinc oxide-fullerene hydrophobic thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

C60 and C60-ZnO thin films were synthesized by spray pyrolysis method, and structural, chemical, optical and self-cleaning characterizations of this nanocomposite were performed before and after plasma treatment. The C60 thin film has a very wide peak in the range of 2θ = 15–35°, which indicates the amorphous structure of this film. After plasma treatment, fullerene peaks appear at angles of 2θ = 13.94, 17°. Fullerene peaks in the C60-ZnO and C60 thin films are similar and are seen exactly at the same angles. The location of zinc oxide peaks did not change before and after plasma treatment. The presence of fullerene peaks in the studied thin films after plasma treatment indicates that the crystallographic quality of C60 and ZnO-C60 thin films has improved. FESEM image of fullerene thin films before and after plasma treatment shows that fullerene nanoparticles are almost spherical. After plasma treatment, the particle size is reduced, and all particles are below 50 nm with spherical shape. FESEM images of C60-ZnO thin film after plasma treatment show both fullerene and zinc oxide particles become smaller and the particles have a uniform distribution. The results of FTIR chemical analysis in thin film samples show the chemical bonds of the nanocomposite before and after plasma treatment. In AFM images, the surface of the C60 thin film is smooth and uniform before plasma compared to after plasma processing. Also, in C60-ZnO composite, the grain size after plasma treatment is much larger than before plasma treatment. The contact angle of the thin films indicates that the composite samples become hydrophobic after plasma processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.K. Hau, H.L. Yip, H. Ma, A.K. Jen, Appl. Phys. Lett. 93, 233304-1-233304–4 (2008)

    Article  ADS  Google Scholar 

  2. S. Fukuzumi, K. Ohkubo, T. Suenobu, Acc. Chem. Res. 47, 1455–1464 (2014)

    Article  Google Scholar 

  3. H. Fu, T. Xu, S. Zhu, Y. Zhu, Environ. Sci. Technol. 42, 8064–8069 (2008)

    Article  ADS  Google Scholar 

  4. P.A. Troshin, N.S. Sariciftci, in Supramolecular chemistry for organic photovoltaics. Supramolecular chemistry: from molecules to nanomaterials. ed. by P.A. Gale, J.W. Steed (John Wiley & Sons, US, 2012), pp. 2725–2788

    Google Scholar 

  5. A.S. Huss, A. Bierbaum, R. Chitta, D.J. Ceckanowicz, K.R. Mann, W.L. Gladfelter, D.A. Blank, J. Am. Chem. Soc. 132, 13963–13965 (2010)

    Article  Google Scholar 

  6. H.M. Cheng, K.F. Lin, H.C. Hsu, W.F. Hsieh, Appl. Phys. Lett. 88, 261909 (2006)

    Article  ADS  Google Scholar 

  7. H. Imahori, Org. Biomol. Chem. 2, 1425–1433 (2004)

    Article  Google Scholar 

  8. D. Gust, Faraday Discuss 185, 9–35 (2015)

    Article  ADS  Google Scholar 

  9. E.A. Zakhidov, M.A. Zakhidova, A.M. Kokhkharov, A.E. Yarbekov, V.O. Kuvondikov, S.Q. Nematov, E.P. Normatov, A.A. Saparbaev, Turkish J. Biol. 39(2), 276–283 (2015)

    Article  Google Scholar 

  10. B.G. Shohany, A.K. Zak, Ceramics Int. 46(5), 5507–5520 (2020)

    Article  Google Scholar 

  11. L. Motevalizadeh, B.G. Shohany, M.E. Abrishami, Mod. Phys. Lett. B 30(04), 1650024 (2016)

    Article  ADS  Google Scholar 

  12. B.G. Shohany, L. Motevalizadeh, M.E. Abrishami, J. Theor. Appl. Phys. 12, 219–225 (2018)

    Article  Google Scholar 

  13. P.V. Kamat, J. Am. Chem. Soc. 113, 9705–9707 (1991)

    Article  Google Scholar 

  14. P. Schulz, L.L. Kelly, P. Winget, H. Li, H. Kim, P.F. Ndione, A.K. Sigdel, J.J. Berry, S. Graham, J.L. Bredas, A. Kahn, O.L.A. Monti, Adv. Funct. Mater. 24, 7381–7389 (2014)

    Article  Google Scholar 

  15. S.M. Shah, A. Kira, H. Imahori, D. Ferry, H. Brisset, F. Fages, J. Ackermann, J. Colloid Interf. Sci. 386, 268–276 (2012)

    Article  ADS  Google Scholar 

  16. N. Furuuchi, R. Shrestha, Y. Yamashita, T. Hirao, K. Ariga, L. Shrestha, Sensors 19, 267–272 (2019)

    Article  ADS  Google Scholar 

  17. N.S. Lebedeva, Y.A. Gubarev, A.M. Kolker, N.Y. Borovkov, Chem. Phys. Chem. 19, 284–289 (2018)

    Article  Google Scholar 

  18. U.K. Makhmanov, A.M. Kokhkharov, S.A. Bakhramov, D. Erts, Lith. J. Phys. 3, 194–204 (2020)

    Google Scholar 

  19. M.S.H. Nagahara, L.A. Thundat, T. Mokarian-Tabari, P. Furukawa, Electro. Chem. Soc. 165, 137–156 (2018)

    Google Scholar 

  20. M.S. Saveleva, K. Eftekhari, A. Abalymov, T.E.L. Douglas, Front. Chem. 7, 179–185 (2019)

    Article  ADS  Google Scholar 

  21. F.C. Chen, Adv. Opt. Mater. 7, 180066–180075 (2019)

    Google Scholar 

  22. M. Socol, N. Preda, A. Costas et al., Appl. Surf. Sci. 503, 144317–144325 (2020)

    Article  Google Scholar 

  23. J.-S. Lee, S.-M. Song, Y.-H. Kim, J.-Y. Kwon, M.-K. Han, Phys. Status Solidi A 210(9), 1745–1749 (2013)

    Article  ADS  Google Scholar 

  24. A.F. Ahmed, M.R. Abdulameer, M.M. Kadhim, F.A.H. Mutlak, Optik Int. J. Light Electron Optics 249, 168260–168269 (2022)

    Article  Google Scholar 

  25. M.A. Abed, F.A.H. Mutlak, A.F. Ahmed, U.M. Nayef, S.K. Abdulridha, J. Phys. Conf. Series 1795, 012013 (2021)

    Article  Google Scholar 

  26. M.L. Addonizio, A. Antonaia, Surface morphology and light scattering properties of plasma etched ZnO: B films grown by LP-MOCVD for silicon thin film solar cells. Thin Sol. Films. 518, 1026–1031 (2009)

    Article  ADS  Google Scholar 

  27. D. Andronikov, A. Abramov, E. Terukov, A. Vinogradov, A. Ankudinov, V. Afanasjev, High-efficiency plasma treatment for surface modification of LPCVD ZnO. Semiconductors 49, 823–826 (2015)

    Article  ADS  Google Scholar 

  28. N. Ohashi, Y. Wang, T. Ishigaki et al., Lowered stimulated emission threshold of zinc oxide by hydrogen doping with pulsed argon-hydrogen plasma. J. Cryst. Growth 306(2), 316–320 (2007)

    Article  ADS  Google Scholar 

  29. A.A. Yousef, A.F. Ahmed, Iraqi J. Sci. 62, 3560–3569 (2021)

    Google Scholar 

  30. W.S. Hussein, A.F. Ahmed, K.A. Aadim, Iraqi J. Sci. 61, 1307–1312 (2020)

    Article  Google Scholar 

  31. A.F. Ahmed, W.B. Yaseen, Q.A. Abbas, F.A.H. Mutlak, Appl. Phys. A 127, 746–752 (2021)

    Article  Google Scholar 

  32. S. Walther, S. Polster, M. Jank, H. Thiem, H. Ryssel, L. Frey, Adv. Powder Technol. 22, 253 (2011)

    Article  Google Scholar 

  33. A.K. Singh, A. Janotti, M. Scheffler, C.G. Van de Walle, Phys. Rev. Lett. 101, 055502 (2008)

    Article  ADS  Google Scholar 

  34. T.E. Saraswati, U.H. Setiawan, M.R. Ihsan, I. Isnaeni, Y. Herbani, The study of the optical properties of C60 fullerene in different organic solvents. Open Chem. 17, 1198–1212 (2019)

    Article  Google Scholar 

  35. M. Socol, N. Preda, A. Costas, B. Borca, G. Popescu-Pelin, A. Mihailescu, G. Socol, A. Stanculescu, Thin films based on cobalt phthalocyanine: C60 fullerene: ZnO hybrid nanocomposite obtained by laser evaporation. Nanomaterials 10, 468 (2020)

    Article  Google Scholar 

  36. B.A. Al-Asbahi, M.H. Haji Jumali, R. Al-Gaashani, Efficient charge transfer mechanism in polyfluorene/ZnO nanocomposite thin films. J. Nanomater. 2014, 608572 (2014)

    Article  Google Scholar 

  37. H.G. Drickamer, R.W. Lynch, R.L. Clendenen, E.A. Perez-Albueene, X-ray diffraction studies of the lattice parameters of solids under very high pressure. Solid State Phys. 19, 135–228 (1967)

    Article  Google Scholar 

  38. K.A. Vijayalakshmi, K. Seema, Surface characterization of C60 thin film induced by DC glow discharge plasma, UGC sponsored national seminar on emerging trends in plasma technology and its applications (ETPTA-2014), 20–21 August 2014, Sri Vasavi College, Erode–638316, India

  39. E.V. Basiuk, V.A. Basiuk, V.P. Shabel’nikov, V.G. Golo-vatyi, J.O. Flores, J.M. Saniger, Reaction of silica-supported fullerene C60withnonylamine vapor. Carbon 41, 2339–2346 (2003)

    Article  Google Scholar 

  40. R.R. Sahoo, A. Patnaik, Binding of fullerene C60to gold surface functionalized byself-assembled monolayers of 8-amino-1-octane thiol: a structure elucidation. J. Colloid Interf. Sci. 268, 43–49 (2003)

    Article  ADS  Google Scholar 

  41. J. Janaki, M. Premila, P. Gopalan, V.S. Sastry, C.S. Sundar, Thermal stabilityof a fullerene-amine adduct. Thermochim. Acta 356, 109–116 (2000)

    Article  Google Scholar 

  42. S.G. Stepanian, V.A. Karachevtsev, A.M. Plokhotnichenko, L. Adamowicz, A.M. Rao, IR spectra of photopolymerized C60 films. Experimental and density functional theory study. J. Phys. Chem. B 110, 15769–15775 (2006)

    Article  Google Scholar 

  43. H. Kato, S. Takemura, K. Iwasaki, Y. Watanabe, N. Nanba, T. Hiramatsu, O. Nishikawa, M. Taniguchi, X-ray photoemission spectroscopy and fourier transform infrared characterizations of C60 states in C60 doped conducting polymers. J. Vac. Sci. Technol. A24, 1500–1504 (2006)

    Article  Google Scholar 

  44. D.I. Bletskan, Phase equilibrium in binary systems AIVBVI. J. Ovonic Res. 1, 61–69 (2005)

    Google Scholar 

  45. B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Cathodic electrodeposition and analysis of SnS films for photoelectrochemical cells. Mater. Chem. Phys. 71, 40–46 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ala F. Ahmed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.F., Mutlak, F.AH. & Abbas, Q.A. Evaluation of cold plasma effect to achieve fullerene and zinc oxide-fullerene hydrophobic thin films. Appl. Phys. A 128, 147 (2022). https://doi.org/10.1007/s00339-021-05252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05252-8

Keywords

Navigation