Skip to main content

Four-terminal perovskite/silicon tandem solar cells based on large-area perovskite solar cells utilizing low-cost copper semi-transparent electrode

Abstract

This paper presents the fabrication of large-area four-terminal (4 T) perovskite-Si solar cells. Large-area semi-transparent perovskite solar cells were fabricated by utilizing a thin copper layer as the low-cost transparent electrode. Carrier selective contact (CSC)-based Si solar cell was also fabricated with molybdenum oxide (MoOx) hole selective layer. Large-area semi-transparent perovskite solar cells (PSCs) with active areas 1 cm2 and 2 cm2 showed a power conversion efficiency (PCE) of 5.07% and 4.10%, respectively. The CSC Si solar cell displayed a PCE of 3.42%. The CSC-Si cell exhibited an efficiency of 2.24% under filtered light when placed under the semi-transparent perovskite top cell. The four-terminal effect was also demonstrated with a commercially available monocrystalline-Si solar cell. The efficiency of commercial c-Si solar cell was 14.11% under 100 mW cm−2 illumination and 10.08% under filtered light. The combined efficiency values of the 4 T configurations with perovskite top cell and the bottom CSC Si cell, and the commercial c-Si solar cell, were 7.31% and 15.15%, respectively. These values were more than the individual cell efficiencies.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Solar Energy Mater. Solar Cells. (2017). https://doi.org/10.1016/j.solmat.2017.06.024

    Article  Google Scholar 

  2. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Science. (2017). https://doi.org/10.1126/science.aan2301

    Article  Google Scholar 

  3. M.R. Samantaray, N.K. Rana, A. Kumar, D.S. Ghosh, N. Chander, Int. J. Energy Res. (2021). https://doi.org/10.1002/er.7243

    Article  Google Scholar 

  4. M. Imran, N.A. Khan, Appl A Phys (2019). https://doi.org/10.1007/s00339-019-2866-4

    Article  Google Scholar 

  5. A. Richter, M. Hermle, S.W. Glunz, IEEE J. Photovoltaics (2013). https://doi.org/10.1109/JPHOTOV.2013.2270351

    Article  Google Scholar 

  6. G.E. Eperon, M.T. Hörantner, H.J. Snaith, IEEE J Photovoltaics (2018). https://doi.org/10.1038/s41560-018-0190-4

    Article  Google Scholar 

  7. A. Pathania, J. Madan, R. Pandey, R. Sharma, Appl. Physics A (2020). https://doi.org/10.1007/s00339-020-03758-1

    Article  Google Scholar 

  8. P.W. Chen, P.L. Chen, C.C. Tsai, Electron Mater. Lett. (2016). https://doi.org/10.1007/s13391-016-4004-1

    Article  Google Scholar 

  9. M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201904102

    Article  Google Scholar 

  10. J. Werner, B. Niesen, C. Ballif. (2018). https://doi.org/10.1002/admi.201700731

    Article  Google Scholar 

  11. M. Jaysankar, B.A. Raul, J. Bastos, C. Burgess, C. Weijtens, M. Creatore, T. Aernouts, Y. Kuang, R. Gehlhaar, A. Hadipour, J. Poortmans, ACS Energy Lett. (2018). https://doi.org/10.1021/acsenergylett.8b02179

    Article  Google Scholar 

  12. H.A. Dewi, H. Wang, J. Li, M. Thway, R. Sridharan, R. Stangl, F. Lin, A.G. Aberle, N. Mathews, A. Bruno, S. Mhaisalkar, ACS Appl. Mater. Interfaces (2019). https://doi.org/10.1021/acsami.9b13145

    Article  Google Scholar 

  13. C. Battaglia, A. Cuevas, S. De Wolf, Energy Environ. Sci. (2016). https://doi.org/10.1039/C5EE03380B

    Article  Google Scholar 

  14. S. Mudgal, S. Singh, V.K. Komarala, IEEE J. Photovoltaics (2018). https://doi.org/10.1109/JPHOTOV.2018.2821839

    Article  Google Scholar 

  15. P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.F. Lelievre, A. Chaumartin, A. Fave, M. Lemiti, Solar Energy Mater. Solar Cells (2006). https://doi.org/10.1016/j.solmat.2006.03.005

    Article  Google Scholar 

  16. N.K. Pathak, N. Chander, V.K. Komarala, R.P. Sharma, Plasmonics (2017). https://doi.org/10.1007/s11468-016-0255-9

    Article  Google Scholar 

  17. K. Singh, M. Nayak, S. Mudgal, S. Singh, V.K. Komarala, Solar Energy (2019). https://doi.org/10.1016/j.solener.2019.03.059

    Article  Google Scholar 

  18. B. Li, J. Tian, L. Guo, C. Fei, T. Shen, X. Qu, G. Cao, ACS Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.5b11679

    Article  Google Scholar 

  19. T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E.C. Wang, T.C. Kho, K.C. Fong, M. Stocks, E. Franklin, Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700228

    Article  Google Scholar 

  20. M. Nayak, S. Mudgal, S. Singh, V.K. Komarala, Solar Energy (2020). https://doi.org/10.1016/j.solener.2020.03.018

    Article  Google Scholar 

  21. P.K. Parashar, V.K. Komarala, Thin Solid Films (2019). https://doi.org/10.1016/j.tsf.2019.05.004

    Article  Google Scholar 

  22. R. Saive, IEEE J. Photovolta. 9, 1477–1484 (2019). https://doi.org/10.1109/JPHOTOV.2019.2930409

    Article  Google Scholar 

  23. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Il Science (2017). https://doi.org/10.1126/science.aan2301

    Article  Google Scholar 

  24. L. Wagner, L.E. Mundt, G. Mathiazhagan, M. Mundus, M.C. Schubert, S. Mastroianni, U. Würfel, A. Hinsch, S.W. Glunz, Scientific reports (2017). https://doi.org/10.1038/s41598-017-13855-6

    Article  Google Scholar 

  25. Y. Chen, H.T. Yi, X. Wu, R. Haroldson, Y.N. Gartstein, Y.I. Rodionov, K.S. Tikhonov, A. Zakhidov, X.Y. Zhu, V. Podzorov, Nat. Commun. (2016). https://doi.org/10.1038/ncomms12253

    Article  Google Scholar 

  26. F. Wang, J. Mei, Y. Wang, L. Zhang, H. Zhao, D. Zhao, ACS Appl. Mater. Interfaces. (2016). https://doi.org/10.1021/acsami.5b11621

    Article  Google Scholar 

  27. J. Gan, R.L. Hoye, Y. Ievskaya, L. Vines, A.T.. Marin, J.L. MacManus-Driscoll, E.V. Monakhov, Solar Energy Mater. Solar Cells (2020). https://doi.org/10.1016/j.solmat.2020.110418

    Article  Google Scholar 

  28. A. Rohatgi, K. Zhu, J. Tong, D.H. Kim, E. Reichmanis, B. Rounsaville, V. Prakash, Y.W. Ok, IEEE J. Photovoltaics (2020). https://doi.org/10.1109/JPHOTOV.2019.2963564

    Article  Google Scholar 

  29. D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen, X. Zhao, K. Zhu, Y. Yan, Accounts of Chem. Res. (2018). https://doi.org/10.1021/acsenergylett.7b01287

    Article  Google Scholar 

  30. H. Ahmed, J. Doran, S.J. McCormack, Solar Energy (2016). https://doi.org/10.1016/j.solener.2016.01.003

    Article  Google Scholar 

  31. M. Saliba, L. Etgar, ACS Energy Lett. (2020). https://doi.org/10.1021/acsenergylett.0c01642

    Article  Google Scholar 

  32. H.J. Lee, S.P. Cho, S.I. Na, S.S. Kim, J. Alloys Compounds. (2019). https://doi.org/10.1016/j.jallcom.2019.05.051

    Article  Google Scholar 

  33. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Progress Photovoltaics: Res. Appl. (2021). https://doi.org/10.1002/pip.3444

    Article  Google Scholar 

  34. N.G. Park, Progress Photovoltaics Res Appl (2019). https://doi.org/10.1021/acsenergylett.9b02442

    Article  Google Scholar 

  35. H.A. Dewi, H. Wang, J. Li, M. Thway, F. Lin, A.G. Aberle, N. Mathews, S. Mhaisalkar, A. Bruno, Energy Technology (2020). https://doi.org/10.1002/ente.201901267

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support through research grants DST/INSPIRE/04/2015/003204 and DST/NM/NT/2018/146.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manas R. Samantaray or Nikhil Chander.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 191 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samantaray, M.R., Ghosh, D.S. & Chander, N. Four-terminal perovskite/silicon tandem solar cells based on large-area perovskite solar cells utilizing low-cost copper semi-transparent electrode. Appl. Phys. A 128, 111 (2022). https://doi.org/10.1007/s00339-021-05234-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05234-w

Keywords

  • Solar energy materials
  • Thin films
  • Semiconductors
  • Four-terminal tandem device