Skip to main content
Log in

Evaluation of dielectric properties of nanocrystalline ZnO films at sub-ambient temperatures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystalline ZnO films were prepared on glass substrates via the Pechini method and the spin-coating technique. X-ray diffraction patterns showed that the films were single phase and free from impurities or secondary phases within the sensitivity limit of the conventional diffractometer used in this investigation. A crystallite size of ~ 30 nm and a lattice microstrain of 0.7 × 10–3 were determined from the X-ray diffraction patterns, using the Williamson–Hall model. Impedance spectroscopy studies were performed in the frequency range 40 Hz to 5 MHz at temperatures as low as 90 K. The complex impedance spectra showed only one semicircle, suggesting that the dielectric response mainly stemmed from a single capacitive element, corresponding to bulk grains. This was confirmed by means of the electric modulus approach. The real and imaginary parts of the dielectric permittivity decreased with increasing frequency and decreasing temperature. From the evolution of the imaginary part of the modulus with the temperature, an activation energy of ~ 20 meV was determined. The hopping of small polarons between localized states was identified as the physical mechanism governing the conduction process in the films studied. The dielectric losses were characterized by the imaginary component of the capacitance. The dependence of the DC resistivity on the temperature showed typical semiconductor behavior. Interestingly, the value of the activation energy, obtained from the analysis of the DC resistivity, agreed well with that estimated from the imaginary part of the electric modulus. This finding was interpreted as a sign of the common thermal origin of the phenomena involved in the motion of the charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, J. Narayan, J. Appl. Phys. 85, 7884 (1999)

    Article  ADS  Google Scholar 

  2. T. Minami, H. Nanto, S. Takata, Thin Solid Films 124, 43 (1985)

    Article  ADS  Google Scholar 

  3. A. Wei, X.W. Sun, J.X. Wang, Y. Lie, X.P. Cai, C.M. Li, Z.L. Dong, W. Huang, Appl. Phys. Lett. 89, 123902 (2006)

    Article  ADS  Google Scholar 

  4. M. Peneza, C. Martucci, V.I. Anisimkin, L. Vasanelli, Mater. Sci. Forum 203, 137 (1996)

    Article  Google Scholar 

  5. A. Umara, M.M. Rahman, A. Al-Hajry, Y.B. Hahn, Talanta 78, 284 (2009)

    Article  Google Scholar 

  6. O. Taratula, E. Galoppini, R. Mendelsohn, P.I. Reyes, Z. Zhang, Z. Duan, J. Zhong, Y. Lu, Langmuir 25, 2107 (2009)

    Article  Google Scholar 

  7. X. Lu, H. Bai, P. He, Y. Cha, G. Yang, L. Tan, Y. Yang, Anal. Chim. Acta 615, 158 (2008)

    Article  Google Scholar 

  8. J. Zhou, N. Xu, Z.L. Wang, Adv. Mater. 18, 2432 (2006)

    Article  Google Scholar 

  9. G. Venkataiah, V. Prasad, P.V. Reddy, J. Alloy. Compd. 429, 1 (2007)

    Article  Google Scholar 

  10. D. Segal, J. Mater. Chem. 7, 1297 (1997)

    Article  Google Scholar 

  11. F. Sharifianjazi, N. Parvin, M. Tahriri, J. Non-Cryst, Solids 476, 108 (2017)

    Google Scholar 

  12. A.M. El Nahrawy, B.A. Hemdan, A.B. Abou Hammad, Nano-Struct. Nano-Objects 26, 100715 (2021)

    Article  Google Scholar 

  13. A.M. El Nahrawy, A.M. Bakr, B.A. Hemdan, A.B. Abou Hammad, Int. J. Environ. Sci. Technol. 17, 4481 (2020)

    Article  Google Scholar 

  14. J.G. Ramírez, R. Schmidt, A. Sharoni, M.E. Gómez, I.K. Schuller, E.J. Patiño, Appl. Phys. Lett. 102, 063110 (2013)

    Article  ADS  Google Scholar 

  15. R. Schmidt, W. Eerenstein, T. Winiecki, F.D. Morrison, P.A. Midgley, Phys. Rev. B 75, 245111 (2007)

    Article  ADS  Google Scholar 

  16. A.M. Mansour, A.B. Abou Hammad, A.M. El Nahrawy, Nano-Struct. Nano-Objects 25, 100646 (2021)

    Article  Google Scholar 

  17. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  18. A.A. Coelho, Appl. Crystallogr. 51, 210 (2018)

    Article  Google Scholar 

  19. H. Zaka, B. Parditka, Z. Erdélyi, H.E. Atyia, P. Sharma, S.S. Fouad, Optik 203, 163933 (2020)

    Article  ADS  Google Scholar 

  20. B. Altun, A. Ajjaq, A.O. Çağırtekin, I. Karaduman, E.F. Sarf, S. Acar, Ceram. Int. 47, 27251 (2021)

    Article  Google Scholar 

  21. N. Shaktia, T. Mandal, A. Prakash, G. Purohit, Surf. Inter. 9, 228 (2017)

    Google Scholar 

  22. F. Ahmad, A. Maqsood, Mat. Sci. Eng. B 273, 115431 (2021)

    Article  Google Scholar 

  23. C. Tsonos, A. Kanapitsas, D. Triantis, C. Anastasiadis, I. Stavrakas, P. Pissis, Jpn. J. Appl. Phys. 49, 051102 (2010)

    Article  ADS  Google Scholar 

  24. G.D. Mahan, Many-particles physics (Kluwer/Plenum, New York, 2000), p. 454

    Book  Google Scholar 

  25. T. Holstein, Ann. Phys. 8, 325 (1959)

    Article  ADS  Google Scholar 

  26. K. Kamala-Bharathi, H. Tan, S. Takeuchi, L. Meshi, H. Shen, J. Shin, I. Takeuchi, L.A. Bendersky, RSC Adv. 6, 61947 (2016)

    Google Scholar 

  27. M.A. Khan, R. Raza, R.B. Lima, M. Asharf Chaudhry, E. Ahmed, N.R. Khalid, G. Abbas, B. Zhu, N. Nasir, Ceram. Int. 40, 9775 (2014)

    Article  Google Scholar 

  28. T. Larbi, B. Ouni, A. Boukachem, K. Boubaker, M. Amlouk, Mat. Sci. Semicond. Process. 22, 50 (2014)

    Article  Google Scholar 

  29. M. Haj Lakhdar, B. Ouni, M. Amlouk, Mater. Sci. Semiconductor Process. 19, 32 (2014)

    Article  Google Scholar 

  30. H. Gul, A.Z. Abbasi, F. Amin, M.A. Rehman, A. Maqsood, J. Magn. Magn. Mater. 311, 494 (2007)

    Article  ADS  Google Scholar 

  31. B.G. Soares, M.E. Leyva, G.M.O. Barra, D. Khastgir, J. Eur. Polym. 42, 676 (2006)

    Article  Google Scholar 

  32. K.M. Batoo, Physica B 406, 382 (2011)

    Article  ADS  Google Scholar 

  33. M.M. El-Nahass, H.A.M. Ali, Solid State Commun. 152, 1084 (2012)

    Article  ADS  Google Scholar 

  34. S. Mandal, H. Mullick, S. Majumdar, A. Dhar, S.K. Ray, J. Phys. D: Appl. Phys. 41, 025307 (2008)

    Article  ADS  Google Scholar 

  35. K. Boubaker, Eur. Phys. J. B 84, 235 (2011)

    Article  ADS  Google Scholar 

  36. N.F. Mott, E.A. Davis, R.A. Streel, Philos. Mag. 32, 961 (1975)

    Article  ADS  Google Scholar 

  37. B. Abay, H.S. Guder, H. Efeogylu, Y.K. Yogyurtcu, Physica B 254, 148 (1998)

    Article  ADS  Google Scholar 

  38. L. Landau, E. Lifchitz, Electrodynamique des milieux continus (Mir, Moscow, 1969), p. 325

    Google Scholar 

  39. T. Holstein, Ann. Phys. 8, 343 (1959)

    Article  ADS  Google Scholar 

  40. S.L. Kadam, C.M. Kanamadi, K.K. Patankar, B.K. Chougule, Mater. Lett. 59, 215 (2005)

    Article  Google Scholar 

  41. W. Hong Sio, C. Verdi, S. Poncé, F. Giustino, Phys. Rev. B 99, 235139 (2019)

    Article  ADS  Google Scholar 

  42. H. Mori, H. Matsuno, H. Sakata, J. Non-Cryst, Solids 276, 78 (2000)

    Google Scholar 

  43. A.M. Abo El Ata, M.K. El Nimra, S.M. Attia, D. El Kony, A.H. Al Hammadi, J. Magn. Magn. Mater. 297, 3328 (2006)

    Article  Google Scholar 

  44. M.A. Ahmed, E. Ateia, S.I. El-Dek, J. Mater. Lett. 57, 4256 (2003)

    Article  Google Scholar 

  45. S.A. Ansari, A. Nisar, B. Fatma, W. Khan, M. Chaman, A. Azam, A.H. Naqvi, Mater. Research. Bulletin 47, 4161 (2012)

    Google Scholar 

  46. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74, 125 (1976)

    Article  Google Scholar 

  47. M. Prabu, S. Selvasekarapandian, Mater. Chem. Phys. 134, 366 (2012)

    Article  Google Scholar 

  48. M. Pant, D.K. Kanchan, N. Gondaliya, Mater. Chem. Phys. 115, 98 (2009)

    Article  Google Scholar 

  49. G.S. Nadkarni, J.G. Simmons, J. Appl. Phys. 41, 545 (1970)

    Article  ADS  Google Scholar 

  50. P.P. Sahay, S. Tewari, R.K. Nath, Cryst. Res. Technol. 42, 723 (2007)

    Article  Google Scholar 

  51. K. Padmasree, D. Kanchan, Mater. Sci. Eng. B 122, 24 (2005)

    Article  Google Scholar 

  52. B. Soltabayev, A.O. Çagırtekin, A. Mentbayeva, M.A. Yıldırım, S. Acar, Thin Solid Films 734, 138846 (2021)

    Article  ADS  Google Scholar 

  53. K. Sheng, Y. Sun, C. Li, W. Yuan, G. Shi, Sci. Rep. 2, 247 (2012)

    Article  ADS  Google Scholar 

  54. X. Yang, J. Zhu, L. Qiu, D. Li, Adv. Mater. 23, 2833 (2011)

    Article  ADS  Google Scholar 

  55. S. Tricot, M. Nistor, É. Millon, C. Boulmer-Leborgne, N. Bogdan-Mandache, J. Perriére, W. Seiler, Surface Sci. 604, 2024 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the Universidad Nacional de Colombia - sede Medellin, and the Universidad de Nariño.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Morán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mera, J., Morán, O. Evaluation of dielectric properties of nanocrystalline ZnO films at sub-ambient temperatures. Appl. Phys. A 128, 128 (2022). https://doi.org/10.1007/s00339-021-05225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05225-x

Keywords

Navigation