Skip to main content
Log in

Effect of different sources of oxygen on the thermal stability and crystallization behavior of the Cu66Zr34 metallic glass

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Oxygen impurity dramatically influences the thermal stability and properties of metallic glasses (MGs). Oxygen was introduced to the base Cu66Zr34 alloy (AM) through deliberate addition (AMO), low vacuum fabrication (AMC) and oxidation (AO), respectively. Adding 2 at% oxygen leads to the formation of ZrO2 in the AMO alloy, while Cu51Zr14 is further seen in the AMC sample. The amorphous phase decomposes into Cu, ZrO2 and residual glassy phase after being oxidized in the air for 12 months. Higher Tx accompanied by wider ΔTx was obtained for the AMO and AMC alloys indicating better thermal stability compared to the AM alloy due to the stronger bonding between Zr and oxygen. The crystallization behavior changes from a single-step process for the AM and AMC samples to a double-step process for the AMO and AO alloys, indicating the crystallization mode changes from simultaneous precipitation of Cu51Zr14, Cu8Zr3 and Cu10Zr7 to a successive stepwise transformation with Cu51Zr14 as the primary phase. Such alteration further affects the variations of electrical resistivity and phase morphology. The findings imply varied effects on both the thermal stability and the crystallization behavior from the different sources of oxygen in the Cu66Zr34 MG. The appropriate oxygen addition in the melt before quenching benefits the thermal stability, but oxidation introduced oxygen deteriorates it. The different sources of oxygen also change crystallization behavior in a much variable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses. Mater. Sci. Eng. R. 44, 45–89 (2004)

    Article  Google Scholar 

  2. W.K. Luo, H.W. Sheng, F.M. Alamgir, J.M. Bai, J.H. He, E. Ma, Icosahedral short-range order in amorphous alloys. Phys. Rev. Lett. 92, 145502 (2004)

    Article  ADS  Google Scholar 

  3. W.L. Johnson, Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30, 81–134 (1986)

    Article  Google Scholar 

  4. N. Li, W. Chen, L. Liu, Thermoplastic micro-forming of bulk metallic glasses: a review. JOM 68, 1246–1261 (2016)

    Article  Google Scholar 

  5. E. Ma, J. Ding, Tailoring structural inhomogeneities in metallic glasses to enable tensile ductility at room temperature. Mater. Today 19, 568–579 (2016)

    Article  Google Scholar 

  6. X.H. Lin, W.L. Johnson, W.K. Rhim, Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy. Mater. Trans. JIM 38, 473–477 (1997)

    Article  Google Scholar 

  7. C.T. Liu, M.F. Chisholm, M.K. Miller, Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy. Intermetallics 10, 1105–1112 (2002)

    Article  Google Scholar 

  8. A. Gebert, J. Eckert, L. Schultz, Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu17.5Ni10 metallic glass. Acta Mater. 46, 5475–5482 (1998)

    Article  ADS  Google Scholar 

  9. F. Qiu, Y.Y. Liu, R.F. Guo, Z.H. Bai, Q.C. Jiang, Effect of oxygen content on the microstructure, compression properties and work-hardening behaviors of ZrCuAlNi glassy composites. Mater. Sci. Eng. A 580, 13–20 (2013)

    Article  Google Scholar 

  10. H.X. Li, J.E. Gao, Z.B. Jiao, Y. Wu, Z.P. Lu, Glass-forming ability enhanced by proper additions of oxygen in a Fe-based bulk metallic glass. Appl. Phys. Lett. 95, 161905 (2009)

    Article  ADS  Google Scholar 

  11. C.T. Chang, J.H. Zhang, B.L. Shen, W.H. Wang, A. Inoue, Pronounced enhancement of glass-forming ability of Fe–Si–B–P bulk metallic glass in oxygen atmosphere. J. Mater. Res. 29, 1217–1222 (2014)

    Article  ADS  Google Scholar 

  12. D. Cao, Y. Wu, H.X. Li, X.J. Liu, H. Wang, X.Z. Wang, Z.P. Lu, Beneficial effects of oxygen addition on glass formation in a high-entropy bulk metallic glass. Intermetallics 99, 44–50 (2018)

    Article  Google Scholar 

  13. B.S. Murty, D.H. Ping, K. Hono, A. Inoue, Influence of oxygen on the crystallization behavior of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses. Acta mater. 48, 3985–3996 (2000)

    Article  ADS  Google Scholar 

  14. X.Y. Yang, Y.Y. Ye, M.J. Kramer, D.J. Sordelet, Influence of oxygen on the structure and devitrification pathways in Zr66.7Ni33.3 and Zr66.7Cu33.3 amorphous systems. J. Alloy. Compd. 484, 914–919 (2009)

    Article  Google Scholar 

  15. M.W. Chen, A. Inoue, T. Sakurai, D.H. Ping, K. Hono, Impurity oxygen redistribution in a nanocrystallized Zr65Cr15Al10Pd10 metallic glass. Appl. Phys. Lett. 74, 812–814 (1999)

    Article  ADS  Google Scholar 

  16. Y.X. Wang, H. Yang, G. Lim, Y. Li, Glass formation enhanced by oxygen in binary Zr–Cu system. Scr. Mater. 62, 682–685 (2010)

    Article  Google Scholar 

  17. D.J. Sordelet, X.Y. Yang, E.A. Rozhkova, M.F. Besser, M.J. Kramer, Influence of oxygen content in phase selection during quenching of Zr80Pt20 melt spun ribbons. Intermetallics 12, 1211–1217 (2004)

    Article  Google Scholar 

  18. Z. Wang, L. Huang, G.Q. Yue, B. Shen, F. Dong, R.J. Zhang, Y.X. Zheng, S.Y. Wang, C.Z. Wang, M.J. Kramer, K.M. Ho, L.Y. Chen, Effects of oxygen impurities on glass-formation ability in Zr2Cu Alloy. J. Phys. Chem. B 120, 9223–9229 (2016)

    Article  Google Scholar 

  19. M. Zhang, H.J. Cai, J.C. Zhang, Q.M. Li, Y. Wang, T. Huang, J.C. Liu, X.Y. Wang, Interfacial bonding of CuZr metallic glass via oxide: A molecular dynamics study. Corros. Sci. 182, 109275 (2021)

    Article  Google Scholar 

  20. M. Zhang, Q.M. Li, J.C. Zhang, G.P. Zheng, X.Y. Wang, The prominent combination of ultrahigh strength and superior tensile plasticity in Cu-Zr nanoglass connected by oxide interfaces: a molecular dynamics study. J. Alloy. Compd. 801, 318–326 (2019)

    Article  Google Scholar 

  21. H.M. Kimura, K. Asami, A. Inoue, T. Masumoto, The oxidation of amorphous binary alloys in air. Corros. Sci. 35, 909–915 (1993)

    Article  Google Scholar 

  22. Y.F. Xu, X.Y. Liu, L. Gu, J.Y. Wang, P. Schützendübe, Y. Huang, Y.C. Liu, Z.M. Wang, Natural oxidation of amorphous CuxZr1-x alloys. Appl. Surf. Sci. 457, 396–402 (2018)

    Article  ADS  Google Scholar 

  23. K.F. Guo, J.C. Zhang, Z.D. Sha, Q.X. Pei, Composition-dependent effects of oxygen on atomic structure and mechanical properties of metallic glasses. Phys. Chem. Chem. Phys. 23, 1335–1342 (2021)

    Article  Google Scholar 

  24. A.K. Doolittle, Studies in Newtonian Flow: the dependence of the viscosity of liquids on free space. Appl. Phys. 22, 1472–1475 (1951)

    Google Scholar 

  25. S.V. Ketov, A. Inoue, H. Kato, D.V. Louzguine-Luzgin, Viscous flow of Cu55Zr30Ti10Co5 bulk metallic glass in glass-transition and semi-solid regions. Scrip. Mater. 68, 219–222 (2013)

    Article  Google Scholar 

  26. B.B. Liu, X. Jiang, F. Yi, Y. Qiao, F. Ye, Untypical changes of electrical resistivity and viscosity of the La60Ni10Al25Cu5 metallic glass during crystallization. J. Alloy. Compd. 846, 156370 (2020)

    Article  Google Scholar 

  27. B.B. Liu, C.Y. Han, F. Ye, Adjustment of temperature coefficient of electrical resistivity in Cu66Zr34 metallic glass through surface oxidation induced phase decomposition. Corros. Sci. 125, 166–174 (2017)

    Article  Google Scholar 

  28. A. Van den Beukel, J. Sietsma, The glass transition as a free volume related kinetic phenomenon. Acta Metall. Mater. 38, 383–389 (1990)

    Article  Google Scholar 

  29. S.J. Chung, K.T. Hong, M.R. Ok, J.K. Yoon, G.H. Kim, Y.S. Ji, B.S. Seong, K.S. Lee, Analysis of the crystallization of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass using electrical resistivity measurement. Scrip. Mater. 53, 223–228 (2005)

    Article  Google Scholar 

  30. B.B. Liu, N.N. Zuo, F. Ye, Abnormal change of electrical resistivity in the Cu46Zr46Al8 bulk metallic glass during crystallization. Mater. Lett. 171, 285–288 (2016)

    Article  Google Scholar 

  31. Y.S. Ji, S.J. Chung, M.R. Ok, K.T. Hon, J.Y. Suh, J.W. Byeon, J.K. Yoon, K.H. Lee, K.S. Lee, Analysis on the phase transition behavior of Cu base bulk metallic glass by electrical resistivity measurement. Mater. Sci. Eng. A 449–451, 521–525 (2007)

    Article  Google Scholar 

  32. A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of vonstituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817–2819 (2005)

    Article  Google Scholar 

  33. W. Kai, Y.R. Chen, T.H. Ho, H.H. Hsieh, D.C. Qiao, F. Jiang, G. Fan, P.K. Liaw, Air oxidation of a Zr58Cu22Al12Fe8 bulk metallic glass at 350–550°C. J. Alloy. Compd. 483, 519–525 (2009)

    Article  Google Scholar 

  34. R. Busch, E. Bakke, W.L. Johnson, Viscosity of the supercooled liquid and relaxation at the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater. 46, 4725–4732 (1998)

    Article  ADS  Google Scholar 

  35. A. Kübler, J. Eckert, A. Gebert, L. Schultz, Influence of oxygen on the viscosity of Zr–Al–Cu–Ni metallic glasses in the undercooled liquid region. J. Appl. Phys. 83, 3438–3440 (1998)

    Article  ADS  Google Scholar 

  36. U. Köster, J. Meinhardt, S. Roos, A. Rüdiger, Influence of oxygen contents on nanocrystallization of Co33Zr67 and Zr65Cu17.5Ni10Al7.5 alloys. Mater. Sci. Forum 225–227, 311–316 (1996)

    Article  Google Scholar 

  37. Z. Altounian, E. Batalla, J.O. Strom-Olsen, J.L. Walter, The influence of oxygen and other impurities on the crystallization of NiZr2 and related metallic glasses. J. Appl. Phys. 61, 149–155 (1986)

    Article  ADS  Google Scholar 

  38. O. Taguchi, Y. Iijima, K. Hirano, Reaction diffusion in the Cu-Zr system. J. Alloy. Compd. 215, 329–337 (1994)

    Article  Google Scholar 

  39. X. Zhang, X. Jiang, G.R. Huo, Y.X. Zhang, Y. Qiao, F. Ye, B.B. Liu, Correlated unique variation of electrical resistivity to crystallization behavior of the Zr52.5Cu17.9Ni14.6Al10Ti5 metallic glass. Metals 9, 1298 (2019)

    Article  Google Scholar 

  40. J. Eckert, N. Mattern, M. Zinkevitch, M. Seidel, Crystallization behavior and phase formation in Zr-Al-Cu-Ni metallic glass containing oxygen. Mater. Trans. JIM 39, 632–632 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 51401015). The authors also thank Yihuan Cao, Huan Tong, Yin Zhang and Ziliang Xie for the assistance in DSC and TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ye.

Ethics declarations

Conflict of interest

The authors declare that this article is original and has been written by the stated authors who are all aware of its content and approve its submission. The article has not been published previously and is not under consideration for publication elsewhere. We also declare that there exists no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Liu, C., Jiang, X. et al. Effect of different sources of oxygen on the thermal stability and crystallization behavior of the Cu66Zr34 metallic glass. Appl. Phys. A 128, 84 (2022). https://doi.org/10.1007/s00339-021-05224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05224-y

Keywords

Navigation