Skip to main content
Log in

Unsophisticated one-step synthesis super hydrophilic self-cleaning coating based on ZnO nanosheets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, zinc oxide nanosheets are coated on a porcelain substrate with reversible wettability using a one-step wet-chemical synthesis and spray-coating method. The wettability of 100-nm-thick ZnO coating surface is switched by ultraviolet illumination. Before UV illumination, the water contact angle of this surface is measured at about 70º. Results show that under UV irradiation, ZnO coating becomes super-hydrophilic (WCA < 9°). Conversely, the water contact angle becomes about 70° after preserving the coating in a dark place. In more detail on ZnO structures, the water absorption on the defective model of ZnO nanosheet is analyzed based on first principle ab initio density functional theory. Simulation results depict water molecule has no tendency to stick to nanosheet with zinc vacancy. While the ZnO nanosheet with oxygen vacancy absorbs the water molecule. Consequently, ZnO coating shows self-cleaning abilities on hydrophilic and super-hydrophilic surfaces. Also, ZnO nanosheet structures with controlled wettability can be applied in different applications such as biosensors and microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    Article  Google Scholar 

  2. R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936)

    Article  Google Scholar 

  3. W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1), 1–8 (1997)

    Article  Google Scholar 

  4. W. Pfleging, R. Kohler, M. Torge, V. Trouillet, F. Danneil, M. Stüber, Control of wettability of hydrogenated amorphous carbon thin films by laser-assisted micro-and nanostructuring. Appl. Surf. Sci. 257(18), 7907–7912 (2011)

    Article  ADS  Google Scholar 

  5. C. Neinhuis, W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79(6), 667–677 (1997)

    Article  Google Scholar 

  6. O.I. Vinogradova, A.L. Dubov, Superhydrophobic textures for microfluidics. Mendeleev Commun. 22(5), 229–236 (2012)

    Article  Google Scholar 

  7. P. Ragesh, V.A. Ganesh, S.V. Nair, A.S. Nair, A review on ‘self-cleaning and multifunctional materials.’ J Mater. Chem. A 2(36), 14773–14797 (2014)

    Article  Google Scholar 

  8. C.-R. Hsiao, C.-W. Lin, C.-M. Chou, C.-J. Chung, J.-L. He, Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors. Appl. Surf. Sci. 346, 50–56 (2015)

    Article  ADS  Google Scholar 

  9. Y. Su, C. Luo, Z. Zhang, H. Hermawan, D. Zhu, J. Huang, Y. Liang, G. Li, L. Ren, Bioinspired surface functionalization of metallic biomaterials. J. Mech. Behav. Biomed. Mater. 77, 90–105 (2018)

    Article  Google Scholar 

  10. W. Yang, J. Li, P. Zhou, L. Zhu, H. Tang, Superhydrophobic copper coating: switchable wettability, on-demand oil-water separation, and antifouling. Chem. Eng. J. 327, 849–854 (2017)

    Article  Google Scholar 

  11. Y. Zhou, M. Li, X. Zhong, Z. Zhu, P. Deng, H. Liu, Hydrophobic composite coatings with photocatalytic self-cleaning properties by micro/nanoparticles mixed with fluorocarbon resin. Ceram. Int. 41(4), 5341–5347 (2015)

    Article  Google Scholar 

  12. W. Tong, D. Xiong, N. Wang, C. Yan, T. Tian, Green and timesaving fabrication of a superhydrophobic surface and its application to anti-icing, self-cleaning and oil-water separation. Surf. Coat. Technol. 352, 609–618 (2018)

    Article  Google Scholar 

  13. G. He, S. Lu, W. Xu, P. Ye, G. Liu, H. Wang, T. Dai, Stable superhydrophobic Zn/ZnO surfaces fabricated via electrodeposition on tin substrate for self-cleaning behavior and switchable wettability. J. Alloy. Compd. 747, 772–782 (2018)

    Article  Google Scholar 

  14. B. Zhao, C.W. MacMinn, R. Juanes, Wettability control on multiphase flow in patterned microfluidics. Proc. Natl. Acad. Sci. 113(37), 10251–10256 (2016)

    Article  ADS  Google Scholar 

  15. M. Cantini, P. Rico, D. Moratal, M. Salmerón-Sánchez, Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter 8(20), 5575–5584 (2012)

    Article  ADS  Google Scholar 

  16. N. Verplanck, Y. Coffinier, V. Thomy, R. Boukherroub, Wettability switching techniques on superhydrophobic surfaces. Nanoscale Res. Lett. 2(12), 577 (2007)

    Article  ADS  Google Scholar 

  17. R.-D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 105(10), 1984–1990 (2001)

    Article  Google Scholar 

  18. M. Yang, W. Liu, C. Jiang, Y. Xie, H. Shi, F. Zhang, Z. Wang, Facile construction of robust superhydrophobic cotton textiles for effective UV protection, self-cleaning and oil-water separation. Colloids Surf., A 570, 172–181 (2019)

    Article  Google Scholar 

  19. D.P. Ojha, H.J. Kim, Investigation of photocatalytic activity of ZnO promoted hydrothermally synthesized ZnWO4 nanorods in UV–visible light irradiation. Chem. Eng. Sci. 212, 115338 (2020)

    Article  Google Scholar 

  20. T. Chen, S. Xu, F. Zhang, D.G. Evans, X. Duan, Formation of photo-and thermo-stable layered double hydroxide films with photo-responsive wettability by intercalation of functionalized azobenzenes. Chem. Eng. Sci. 64(21), 4350–4357 (2009)

    Article  Google Scholar 

  21. Fujishima, A and Honda, K, "Electrochemical photolysis of water at a semiconductor electrode." nature, 238 (5358) 37–38 (1972)

  22. Banerjee, S and Tyagi, AK, Functional materials: preparation, processing and applications. Elsevier, (2011)

  23. B. Xu, J. Ding, L. Feng, Y. Ding, F. Ge, Z. Cai, Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surf. Coat. Technol. 262, 70–76 (2015)

    Article  Google Scholar 

  24. A. Kudo, Y. miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev 38, 253–278 (2009)

    Article  Google Scholar 

  25. T. Yanagida, Y. Sakata, H. Imamura, Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO. Chem. Lett. 33(6), 726–727 (2004)

    Article  Google Scholar 

  26. J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, Y. Inoue, Photocatalytic activities for water decomposition of RuO2-loaded AInO2 (A= Li, Na) with d10 configuration. J. Photochem. Photobiol., A 158(2–3), 139–144 (2003)

    Article  Google Scholar 

  27. J. Sato, N. Saito, H. Nishiyama, Y. Inoue, Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O7 (M= Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration. J. Photochem. Photobiol., A 148(1–3), 85–89 (2002)

    Article  Google Scholar 

  28. T.S.G. Raja, K. Jeyasubramanian, Tuning the superhydrophobicity of magnesium stearate decorated ZnO porous structures for self-cleaning urinary coatings. Appl. Surf. Sci. 423, 293–304 (2017)

    Article  ADS  Google Scholar 

  29. M. Zhang, S. Zhan, Z. He, J. Wang, L. Wang, Y. Zheng, J. Liu, Robust electrical uni-directional de-icing surface with liquid metal (Ga90In10) and ZnO nano-petal composite coatings. Mater. Des. 126, 291–296 (2017)

    Article  Google Scholar 

  30. M.N. Rezaie, N. Manavizadeh, E.M.N. Abadi, E. Nadimi, F.A. Boroumand, Comparison study of transparent RF-sputtered ITO/AZO and ITO/ZnO bilayers for near UV-OLED applications. Appl. Surf. Sci. 392, 549–556 (2017)

    Article  ADS  Google Scholar 

  31. K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloy. Compd. 727, 792–820 (2017)

    Article  Google Scholar 

  32. X. Li, B. Wei, J. Wang, X. Li, H. Zhai, J. Yang, Synthesis and comparison of the photocatalytic activities of ZnSe (en) 0.5, ZnSe and ZnO nanosheets. J. Alloy. Compd. 689, 287–295 (2016)

    Article  Google Scholar 

  33. S. Rezaie, Z.G. Bafghi, N. Manavizadeh, Carbon-doped ZnO nanotube-based highly effective hydrogen gas sensor: a first-principles study. Int. J. Hydrog Energy 45(27), 14174–14182 (2020)

    Article  Google Scholar 

  34. Z.G. Bafghi, N. Manavizadeh, Simulation study of ZnO nanowire FET arrays for photosensitivity enhancement of UV photodetectors. Superlattices Microstruct. 122, 18–27 (2018)

    Article  ADS  Google Scholar 

  35. M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6(1), 235–247 (2014)

    Article  ADS  Google Scholar 

  36. Q. Rui, K. Komori, Y. Tian, H. Liu, Y. Luo, Y. Sakai, Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets. Anal. Chim. Acta 670(1–2), 57–62 (2010)

    Article  Google Scholar 

  37. L. Pu, R. Saraf, V. Maheshwari, Bio-inspired interlocking random 3-D structures for tactile and thermal sensing. Sci. Rep. 7(1), 5834 (2017)

    Article  ADS  Google Scholar 

  38. S. Denchitcharoen, N. Siriphongsapak, P. Limsuwan, Growth of ZnO nanosheets by hydrothermal method on ZnO seed layer coated by spin-coating technique. Mater. Today: Proc. 4(5), 6146–6152 (2017)

    Google Scholar 

  39. S. Vempati, J. Mitra, P. Dawson, One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Res. Lett. 7(1), 470 (2012)

    Article  ADS  Google Scholar 

  40. C.-Y. Lin, Y.-H. Lai, H.-W. Chen, J.-G. Chen, C.-W. Kung, Vittal, lR and Ho, K-C, “Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode.” Energy Environ. Sci. 4(9), 3448–3455 (2011)

    Article  Google Scholar 

  41. N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, B. Kumar, Y-doped ZnO nanosheets: gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator. Ceram. Int. 44(7), 8582–8590 (2018)

    Article  Google Scholar 

  42. S. Kar, A. Dev, S. Chaudhuri, Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays. J. Phys. Chem. B 110(36), 17848–17853 (2006)

    Article  Google Scholar 

  43. X. Zhao, F. Lou, M. Li, X. Lou, Z. Li, J. Zhou, Sol− gel-based hydrothermal method for the synthesis of 3D flower-like ZnO microstructures composed of nanosheets for photocatalytic applications. Ceram. Int. 40(4), 5507–5514 (2014)

    Article  Google Scholar 

  44. N.P. Ariyanto, H. Abdullah, S. Shaari, S. Junaidi, B. Yuliarto, Preparation and characterisation of porous nanosheets zinc oxide films: based on chemical bath deposition. World Appl. Sci. J. 6(6), 764–768 (2009)

    Google Scholar 

  45. C. Wu, X. Qiao, J. Chen, H. Wang, F. Tan, S. Li, A novel chemical route to prepare ZnO nanoparticles. Mater. Lett. 60(15), 1828–1832 (2006)

    Article  Google Scholar 

  46. N.K. Neelakantan, P.B. Weisensee, J.W. Overcash, E.J. Torrealba, W.P. King, K.S. Suslick, Spray-on omniphobic ZnO coatings. RSC Adv. 5(85), 69243–69250 (2015)

    Article  ADS  Google Scholar 

  47. Afshari, F, Bafghi, ZG, Manavizadeh, N and Nadimi, E, “H 2 O Absorption on Mono and Multilayer Zinc Oxide Nanoribbon: A First Principles Study.” Proc., 2019,

  48. L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO–nanostructures, defects, and devices. Mater. Today 10(5), 40–48 (2007)

    Article  Google Scholar 

  49. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, Cho, SJ and Morkoç, “A comprehensive review of ZnO materials and devices.” J. Appl. Phys. 98(4), 11 (2005)

    Article  Google Scholar 

  50. Z.Y. Man, Y.W. Zhang, D.J. Srolovitz, Molecular dynamics simulations of the stability of and defects in ZnO nanosheets. Comput. Mater. Sci. 44(1), 86–90 (2008)

    Article  Google Scholar 

  51. S.S. Bhat, U.V. Waghmare, U. Ramamurty, Effect of oxygen vacancies on the elastic properties of zinc oxide: a first-principles investigation. Comput. Mater. Sci. 99, 133–137 (2015)

    Article  Google Scholar 

  52. G. Qin, X. Wang, J. Zheng, C. Kong, B. Zeng, First-principles investigation of the electronic and magnetic properties of ZnO nanosheet with intrinsic defects. Comput. Mater. Sci. 81, 259–263 (2014)

    Article  Google Scholar 

  53. T. Kaewmaraya, A. De Sarkar, B. Sa, Z. Sun, R. Ahuja, Strain-induced tunability of optical and photocatalytic properties of ZnO mono-layer nanosheet. Comput. Mater. Sci. 91, 38–42 (2014)

    Article  Google Scholar 

  54. F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale 6(17), 10224–10234 (2014)

    Article  ADS  Google Scholar 

  55. M.T.Z. Myint, N.S. Kumar, G.L. Hornyak, J. Dutta, Hydrophobic/hydrophilic switching on zinc oxide micro-textured surface. Appl. Surf. Sci. 264, 344–348 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Niroo Research Institute (NRI) of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negin Manavizadeh.

Ethics declarations

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshari, F., Golshan Bafghi, Z. & Manavizadeh, N. Unsophisticated one-step synthesis super hydrophilic self-cleaning coating based on ZnO nanosheets. Appl. Phys. A 128, 75 (2022). https://doi.org/10.1007/s00339-021-05222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05222-0

Keywords

Navigation