Skip to main content
Log in

AZO-coated plasmonic PCF nanosensor for blood constituent detection in near-infrared and visible spectrum

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We propose an elementary circular-shaped plasmonic biosensor based on photonic crystal fiber for multiple blood component identification in near-infrared and visible spectrum. To the best of our knowledge, this is the first paper where plasmonic biosensor is proposed to determine blood components for near-infrared and visible spectrum region using comparative amplitude sensitivity (AS) as the sensitivity parameter. Here we consider Al-doped ZnO as plasmonic material to attain improved sensor performance and extensible design. The finite element method is adopted throughout the numerical study. Observations made using optimum parameters have led to investigations regarding resonance quality, sensitivity, sensor resolution, sensor length and figure of merit (FOM). Numerical results show that the proposed structure exhibits higher amplitude sensitivity of 5078.99 RIU−1, maximum resolution of 5.13 × 10–5 and an overall excellent FOM trait of 325 in the HEy11 mode. For HEx11 mode, the corresponding values are 2576.38 RIU−1, 5.71 × 10–5, 250, respectively. Possible fabrication technique using stack-and-draw method and tolerance analysis of designed sensor are also examined. Since considerable attention has not been given yet in blood component detection by using PCF-SPR sensing, this design will pave a whole new path in the medical biosensing arena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13

Similar content being viewed by others

References

  1. G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens Bioelectron 20(12), 2388–2403 (2005)

    Article  Google Scholar 

  2. P. Bhusana, T. Chris, A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis. Sens. Actuators, B Chem. 120(2), 732–735 (2007)

    Article  Google Scholar 

  3. P. Nilsson, B. Persson, M. Uhlen, P.A. Nygren, Real-time monitoring of DNA Manipulations Using Biosensor Technology. Anal. Biochem. 224(1), 400–408 (1995)

    Article  Google Scholar 

  4. P. Mehrota, Biosensors and their applications – a review. J. Oral Biol. Craniofacial Res. 6(2), 153–159 (2016)

    Article  Google Scholar 

  5. F.A. Mou, M.M. Rahman, M.R. Islam, M.I.H. Bhuiyan, Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection. Sens. Bio-Sensing Res. 29, 100346 (2020). https://doi.org/10.1016/j.sbsr.2020.100346

    Article  Google Scholar 

  6. M.R. Islam, M.F. Kabir, K.M.A. Talha, M.S. Arefin, Highly birefringent honeycomb cladding terahertz fiber for polarization-maintaining applications. Opt. Eng. 59(01), 1 (2020). https://doi.org/10.1117/1.oe.59.1.016113

    Article  Google Scholar 

  7. M.M. Rahman, F.A. Mou, M.I.H. Bhuiyan, M.R. Islam, Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs. Sens. Bio-Sensing Res. 29, 100356 (2020). https://doi.org/10.1016/j.sbsr.2020.100356

    Article  Google Scholar 

  8. M.R. Islam, M.F. Kabir, K.M.A. Talha, M.S. Islam, A novel hollow core terahertz refractometric sensor. Sens. Bio-Sensing Res. 25, 100295 (2019). https://doi.org/10.1016/j.sbsr.2019.100295

    Article  Google Scholar 

  9. M. S. Islam, J. Sultana, A. Dinovitser, K. Ahmed, M. R. Islam, M. Faisal, W.-H. Ng, D. Abbott, “A Novel Zeonex based photonic sensor for alcohol detection in beverages.” IEEE Inter. Conf. on Telecommunications and Photonics (ICTP), pp. 114–18, 2017.

  10. P. Damborsky, J. Vitel, J. Katrlik, Optical biosensors. Essays Biochem. 60(1), 91–100 (2016)

    Article  Google Scholar 

  11. B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 4, 299–304 (1983)

    Article  Google Scholar 

  12. E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Interf. Sci. 143(2), 513–526 (1991)

    Article  ADS  Google Scholar 

  13. J.M. Brockman, B.P. Nelson, R.M. Corn, Surface plasmon resonance imaging measurements of ultrathin organic films. Annu. Rev. Phys. Chem. 51(1), 41–63 (2000)

    Article  ADS  Google Scholar 

  14. B. D. Gupta, R. K. Verma, Surface Plasmon Resonance-Based Fiber Optic Sensors: Principle, Probe Designs, and Some Applications, J. Sens., vol. 2009, Article ID 979761, 12 p, (2009).

  15. R. Jorgenson, S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators, B Chem. 12(3), 213–220 (1993)

    Article  Google Scholar 

  16. A. Hassani, M. Skorobogatiy, Design of the microstructured optical fiber based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 14(24), 11616–11621 (2006)

    Article  ADS  Google Scholar 

  17. J. Sultana, M.S. Islam, M.R. Islam, D. Abbott, High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications. Electron. Lett. 54(2), 61–62 (2018)

    Article  ADS  Google Scholar 

  18. M.S. Islam, K.M.S. Reza, M.R. Islam, Low loss topas based porous-core single-mode photonic crystal Fiber for THz communications. Indian J. Pure Appl. Phys. 57, 836–841 (2019)

    Google Scholar 

  19. M. R. Islam, A. N. M. Iftekher, F. Mou, M. M. Rahman, M. Bhuiyan, Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection, Appl. Phys. A. 127, (2021)

  20. M. R. Islam, A. N. M. Iftekher, K. R. Hasan, M. J. Nayen, S. B. Islam., Dual polarized highly sensitive surface plasmon resonance based chemical and bio molecular sensor, Appl. Opt. 59, (2020)

  21. D. Gao et al., Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 313, 94–98 (2014)

    Article  ADS  Google Scholar 

  22. Rifat et al., Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5), 11499–11510 (2015)

    Article  ADS  Google Scholar 

  23. N. Luan, R. Wang, W. Lv, J. Yao, Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt. Express 23(7), 8576–8582 (2015)

    Article  ADS  Google Scholar 

  24. J.N. Dash, R. Jha, On the performance of graphene based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10, 1123–1131 (2015)

    Article  Google Scholar 

  25. R. Otupiri, K. Akowuah, S. Hexha, H. Ademgil, F. AbdelMalek, A. Aggoun, A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J. 6(4), 1–11 (2014)

    Article  Google Scholar 

  26. M.R. Hasan, S. Akter, A.A. Rifat, S. Rana, S. Ali, A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. Photonics 18(4), 18 (2017)

    Article  Google Scholar 

  27. M. R. Islam, A. N. M. Iftekher, K. R. Hasan, M. J. Nayen, S. B. Islam, R. Islam, R. L. Khan, E. Moazzam and Z. Tasnim, Surface plasmon resonance based highly sensitive gold coated PCF biosensor. Appl. Phys. A. 127, (2021)

  28. M.R. Islam, A.N.M. Iftekher, K.R. Hasan et al., Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor. Opt Quant Electron 53, 112 (2021)

    Article  Google Scholar 

  29. M. R. Islam, M. M. I. Khan, F. Mehjabin, J. A. Chowdhury, and M. Islam, Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor, Results Phys. 19, (2020)

  30. G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P.V. Duyne, Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7(7), 1947–1952 (2007)

    Article  ADS  Google Scholar 

  31. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795–808 (2010)

    Article  ADS  Google Scholar 

  32. J.N. Dash, R. Jha, Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. Photonics Technology Letters, IEEE 26(11), 1092–1095 (2014)

    Article  ADS  Google Scholar 

  33. M.W. Knight, N.S. King, L. Liu, H.O. Everitt, P. Nordlander, N.J. Halas, “Aluminum for Plasmonics. ACS Nano 8(1), 834–840 (2013)

    Article  Google Scholar 

  34. G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv Mater 25(24), 3264–3294 (2013)

    Article  Google Scholar 

  35. S.A. Zynio, A.V. Samoylov, E.R. Surovtseva, V.M. Mirsky, Y.M. Shirshov, Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2(2), 62–70 (2013)

    Article  ADS  Google Scholar 

  36. B.G. Lewis, D.C. Paine, Applications and processing of transparent conducting oxides. MRS Bull. 25, 22 (2000)

    Article  Google Scholar 

  37. S.C. Dixon, D.O. Scanlon, C.J. Carmalta, I.P. Parkin, n-type doped transparent conducting binary oxides: an overview. J. Mater. Chem. C. 4, 6946–6961 (2016)

    Article  Google Scholar 

  38. Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, P.K. Chu, Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film. Opt. Mater. 102, 109800 (2020)

    Article  Google Scholar 

  39. A. Wang, A. Docherty, B.T. Kuhlmey, F.M. Cox, M.C.J. Large, Side-hole fiber sensor based on surface plasmon resonance. Opt. Lett. 34, 3890–3892 (2009)

    Article  ADS  Google Scholar 

  40. E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, T. Monro, Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing. Sensors 15(10), 25090–25102 (2015)

    Article  ADS  Google Scholar 

  41. W.C. Wong et al., Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization. IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107–4602107 (2013)

    Article  ADS  Google Scholar 

  42. V. Kaur, S. Singh, Design of D-shaped PCF-SPR sensor with dual coating of ITO and ZnO conducting metal oxide. Optik 220, 165135 (2020)

    Article  ADS  Google Scholar 

  43. V. Kaur, S. Singh, Design approach of solid-core photonic crystal fiber sensor with sensing ring for blood component detection. J. Nanophotonics 13(2), 026011 (2019)

    Article  ADS  Google Scholar 

  44. K. Ahmed et al., Refractive Index Based Blood Components Sensing in Terahertz Spectrum. IEEE Sens. J. 19(9), 3368–3375 (2019)

    Article  ADS  Google Scholar 

  45. M.S. Islam et al., A Hi-Bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access 7, 79085–79094 (2019)

    Article  Google Scholar 

  46. J. N. Dash, R. Das and R. Jha, "AZO Coated Microchannel Incorporated PCF-Based SPR Sensor: A Numerical Analysis," in IEEE Photonics Technology Letters, vol. 30, no. 11, pp. 1032–1035, 1 June1, (2018).

  47. D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowiski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, Stack and draw fabrication of soft glass microstructured fiber optics, Bull. Polish Acad. Sci: Tech. Sci. 62(4), (2014).

  48. M.B. Hossain, M.S. Hossain, S.M.R. Islam, M.N. Sakib, K.Z. Islam, M.A. Hossain, M.S. Hossain, A.S.M.S. Hosen, G.H. Cho, Numerical development of high performance quasi D-shape PCF-SPR biosensor: an external sensing approach employing gold. Results Phys. 18, 103281 (2020)

    Article  Google Scholar 

  49. M.N. Sakib, M.B. Hossain, K.F. Al-tabatabaie, I.M. Mehedi, M.T. Hasan, M.A. Hossain, I.S. Amiri, High performance dual core d-shape pcf-spr sensor modeling employing gold coat. Results Phys 15, 102788 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rakibul Islam.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Iftekher, A.N.M., Noor, F. et al. AZO-coated plasmonic PCF nanosensor for blood constituent detection in near-infrared and visible spectrum. Appl. Phys. A 128, 86 (2022). https://doi.org/10.1007/s00339-021-05220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05220-2

Keywords

Navigation