Skip to main content
Log in

Flat-elongated-granulated complex morphology with (002) preferred orientation and high sinter activity of AZO nanoparticles by ethanol-assisted coprecipitation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Aluminum zinc oxide (AZO) nanoparticles were successfully synthesized by a facile and environment friendly ethanol-assisted coprecipitation method. The other two coprecipitation methods were studied to obtain AZO nanoparticles using the same granular Zn but different processes (i) homogeneous coprecipitation and (ii) seed-induced coprecipitation simultaneously for comparison. The AZO precursor prepared by ethanol-assisted coprecipitation displayed the unique endothermic heat behavior which was different from the other two counterparts, leading to the hexagonal ZnO structure with (002) crystallized preferred orientation and flat-elongated-granulated complex morphology after calcination at 600 °C, exhibiting outstandingly higher sinter activity than other two counterparts, and achieving a nearly full relative density (99.1%) of AZO ceramic at only 1200 °C through the traditional pressureless sintering technique. The mechanism of crystallized preferred orientation of AZO nanoparticles and sintering densification of AZO ceramics were lastly proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Neves, R. Barros, E. Antunes, J. Calado, E. Fortunato, R. Martins, I. Ferreira, J. Eur. Ceram. Soc. 32, 4381–4391 (2012)

    Article  Google Scholar 

  2. I. Miccoli, R. Spampinato, F. Marzo, P. Prete, N. Lovergine, Appl. Surf. Sci. 313, 418–423 (2014)

    Article  Google Scholar 

  3. J. Xu, Z. Yang, H. Wang, X. Zhang, Bull. Mater. Sci. 37, 895–902 (2014)

    Article  Google Scholar 

  4. X. Du, J. Li, X. Bi, J. Alloy. Compd. 698, 128–132 (2017)

    Article  Google Scholar 

  5. T.T.T. Vo, K.P.O. Mahesh, P.-H. Lin, Y. Tai, Appl. Surf. Sci. 403, 356–361 (2017)

    Article  ADS  Google Scholar 

  6. S.-H. Nam, M.-H. Kim, D.G. Yoo, S.H. Jeong, D.Y. Kim, N.-E. Lee, J.H. Boo, Surf. Rev. Lett. 17, 121–127 (2012)

    Article  ADS  Google Scholar 

  7. D. Podobinski, S. Zanin, A. Pruna, D. Pullini, Ceram. Int. 39, 1021–1027 (2013)

    Article  Google Scholar 

  8. B. Hwang, Y.-K. Paek, S.-H. Yang, S. Lim, W.-S. Seo, K.-S. Oh, J. Alloy. Compd. 509, 7478–7483 (2011)

    Article  Google Scholar 

  9. Q. Shi, K. Zhou, M. Dai, H. Hou, S. Lin, C. Wei, F. Hu, Ceram. Int. 39, 1135–1141 (2013)

    Article  Google Scholar 

  10. F.-H. Hsu, N.-F. Wang, Y.-Z. Tsai, M.-C. Chuang, Y.-S. Cheng, M.-P. Houng, Appl. Surf. Sci. 280, 104–108 (2013)

    Article  ADS  Google Scholar 

  11. J. Zhang, W. Zhang, E. Zhao, H.J. Jacques, Mater. Sci. Semicond. Process. 14, 189–192 (2011)

    Article  Google Scholar 

  12. P.J.M. Isherwood, N. Neves, J.W. Bowers, P. Newbatt, J.M. Walls, Thin Solid Films 566, 108–114 (2014)

    Article  ADS  Google Scholar 

  13. N. Neves, A. Lagoa, J. Calado, A.M. Botelho do Rego, E. Fortunato, R. Martins, and I. Ferreira. J. Eur. Ceram. Soc. 34, 2325-2338 (2014)

  14. X. Tian, Z. Pan, H. Zhang, H. Fan, X. Zeng, C. Xiao, G. Hu, Z. Wei, Ceram. Int. 39, 6497–6502 (2013)

    Article  Google Scholar 

  15. T. Wei, Y. Zhang, Y. Yang, R. Tan, P. Cui, W. Song, Surf. Coat. Technol. 221, 201–206 (2013)

    Article  Google Scholar 

  16. V.V. Gafiychuk, B.K. Ostafiychuk, D.I. Popovych, I.D. Popovych, A.S. Serednytski, Appl. Surf. Sci. 257, 8396–8401 (2011)

    Article  ADS  Google Scholar 

  17. A.A. Ashkarran, A. Iraji Zad, S.M. Mahdavi, M.M. Ahadian, Mater. Chem. Phys. 118, 6–8 (2009)

    Article  Google Scholar 

  18. M. Vaghayenegar, A. Kermanpur, M.H. Abbasi, Ceram. Int. 38, 5871–5878 (2012)

    Article  Google Scholar 

  19. K. Hembram, D. Sivaprahasam, T.N. Rao, J. Eur. Ceram. Soc. 31, 1905–1913 (2011)

    Article  Google Scholar 

  20. M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, Z. Hong, Curr. Appl. Phys. 13, 697–704 (2013)

    Article  ADS  Google Scholar 

  21. J. Wu, T. Li, C. Wang, B. Zhu, R. Wu, C. Xie, Ceram. Int. 37, 3469–3476 (2011)

    Article  Google Scholar 

  22. J. Markmann, A. Tschöpe, R. Birringer, Acta Mater. 50, 1433–1440 (2002)

    Article  ADS  Google Scholar 

  23. N. Neves, R. Barros, E. Antunes, I. Ferreira, J. Calado, E. Fortunato, R. Martins, J. Am. Ceram. Soc. 95, 204–210 (2012)

    Article  Google Scholar 

  24. N.J. Lóh, L. Simão, C.A. Faller, A. De Noni, O.R.K. Montedo, Ceram. Int. 42, 12556–12572 (2016)

    Article  Google Scholar 

  25. B. Ahmadi, S.R. Reza, M. Ahsanzadeh-Vadeqani, M. Barekat, Ceram. Int. 42, 17081–17088 (2016)

    Article  Google Scholar 

  26. S. Zellmer, A. Kockmann, I. Dosch, B. Temel, G. Garnweitner, CrystEngComm 17, 6878–6883 (2015)

    Article  Google Scholar 

  27. D. Liang, S. Liu, Y. Guo, Z. Wang, W. Jiang, C. Liu, W. Ding, H. Wang, N. Wang, Z. Zhang, J. Alloy. Compd. 728, 118–125 (2017)

    Article  Google Scholar 

  28. G. Montanari, A.L. Costa, S. Albonetti, C. Galassi, J. Sol-Gel. Sci. Technol. 36, 203–211 (2005)

    Article  Google Scholar 

  29. A. Ataie, A. Mali, J. Electroceram. 21, 357–360 (2007)

    Article  Google Scholar 

  30. J. Wang, J. Zhu, X. Zhou, Y. Du, W. Huang, J. Liu, W. Zhang, J. Shi, H. Chen, J. Mater. Chem. A. 3, 7631–7638 (2015)

    Article  Google Scholar 

  31. S.-M. Liu, W.-Y. Ding, W.-P. Chai, Mater. Lett. 65, 1272–1275 (2011)

    Article  Google Scholar 

  32. F.H. Pollard, H.S.B. Marshall, A.E. Pedler, Trans. Faraday Soc. 52, 59–68 (1956)

    Article  Google Scholar 

  33. J. Xie, Y. Li, W. Zhao, L. Bian, Y. Wei, Powder Technol. 207, 140–144 (2011)

    Article  Google Scholar 

  34. G.G. Poon, S. Seritan, B. Peters, Faraday Discuss. 179, 329–341 (2015)

    Article  ADS  Google Scholar 

  35. M.-W. Wu, P.-H. Lai, C.-H. Hong, F.-C. Chou, J. Eur. Ceram. Soc. 34, 3715–3722 (2014)

    Article  Google Scholar 

  36. I.-W. Chen, X.-H. Wang, Nature 404, 168–171 (2000)

    Article  ADS  Google Scholar 

  37. C. Ribeiro and E.R. Leite, Assembly and Properties of Nanoparticles. Nanostructured Materials for Electrochemical Energy Production and Storage. Nanostructure Science and Technology. Springer. p. 33–79 (2009)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51772038, 52072056), Natural Science Foundation of Liaoning Province, China (2019-ZD-0096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Wang, J., Zhao, D. et al. Flat-elongated-granulated complex morphology with (002) preferred orientation and high sinter activity of AZO nanoparticles by ethanol-assisted coprecipitation. Appl. Phys. A 128, 52 (2022). https://doi.org/10.1007/s00339-021-05206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05206-0

Keywords

Navigation