Skip to main content

Advertisement

Log in

Kinetics of single-walled carbon nanotube migration in epoxy resin under DC electric field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) orient in a polymer matrix under electric field due to their highly anisotropic electric polarizability. Under direct current (DC) electric field, CNT also migrates toward electrodes resulting in a non-uniform CNT concentration which can affect the properties gained from CNT alignment. In this study, DC electric field was applied across a CNT/epoxy mixture and the kinetics of CNT migration were studied in real time as a function of electric field strength, CNT concentration and length distribution. The rate constant k of CNT migration was found to be linearly proportional to the electric field strength, while varying the CNT concentration and length distribution exhibited a minimal effect on the migration velocity. Combined with our previous study of the temperature dependence of CNT migration, the relationship between the rate constant k of CNT migration and electric field strength, CNT concentration and length distribution was established. The resulting relationship can be used to manipulate the spatial distribution of CNT to selectively enhance the mechanical, thermal and electrical properties of CNT/polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from the experiment at 250 V/cm at 30 °C (the setting temperature of Q-Pod)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Forintos, T. Czigany, Multifunctional application of carbon fiber reinforced polymer composites: electrical properties of the reinforcing carbon fibers—A short review. Compos. B Eng. 162, 331–343 (2019)

    Article  Google Scholar 

  2. Z. Jia, T. Li, F.P. Chiang, L. Wang, An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites. Compos. Sci. Technol 154, 53–63 (2018)

    Article  Google Scholar 

  3. Y. Qin, F. Shuai, H. Kaiyan, H. Ning, Y. Weifeng, A highly efficient numerical method to investigate the conductivity of CNT/polymer composite. Appl. Phys. A 127, 1–8 (2021)

    Article  Google Scholar 

  4. S.I. Hussein, A.M. Abd-Elnaiem, T.B. Asafa, H.I. Jaafar, Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite. Appl. Phys. A 124, 1–9 (2018)

    Article  Google Scholar 

  5. A. J. Brunner, Fracture mechanics characterization of polymer composites for aerospace applications, in Polymer Composites in the Aerospace Industry (Elsevier Ltd, 2015), pp. 191–230

  6. J. Maria, F.D. Paiva, S. Mayer, M. Cerqueira, Comparison of tensile strength of different carbon fabric reinforced epoxy composites. Mater. Res. 9, 83–89 (2006)

    Article  Google Scholar 

  7. F. Meng, J. McKechnie, T. Turner, K.H. Wong, S.J. Pickering, Environmental aspects of use of recycled carbon fiber composites in automotive applications. Environ. Sci. Technol. 51, 12727–12736 (2017)

    Article  ADS  Google Scholar 

  8. T. Suzuki, J. Takahashi, Prediction of energy intensity of carbon fiber reinforced plastics for mass-produced passenger cars, in Proceedings of 9th Japan International SAMPE Symposium (2005), pp. 14–19.

  9. Y. Liu, S. Kumar, Recent progress in fabrication, structure, and properties of carbon fibers. Polym. Rev. 52, 234–258 (2012)

    Article  Google Scholar 

  10. S. Greenwood, Shafts with reinforcing layer for sporting goods and methods of manufacture. U.S. Patent No.10,907,942 Feb. 2 (2021)

  11. T.K. Das, P. Ghosh, N.C. Das, Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Adv. Compos. Hybrid Mater. 2, 214–233 (2019)

    Article  Google Scholar 

  12. V. Khanna, B.R. Bakshi, Carbon nanofiber polymer composites: evaluation of life cycle energy use. Environ. Sci. Technol. 43, 2078–2084 (2009)

    Article  ADS  Google Scholar 

  13. B. Li et al., Structural health monitoring for polymer composites with surface printed MXene/ink sensitive sensors. Appl. Phys. A 126, 1–11 (2020)

    Article  Google Scholar 

  14. A. van Grootel, J. Chang, B.L. Wardle, E. Olivetti, Manufacturing variability drives significant environmental and economic impact: The case of carbon fiber reinforced polymer composites in the aerospace industry. J. Clean. Prod. 261, 121087 (2020)

    Article  Google Scholar 

  15. M. Patel, B. Pardhi, S. Chopara, M. Pal, Lightweight composite materials for automotive—A review. Concepts J. Appl. Res. 5, 41–47 (2018)

    Google Scholar 

  16. S. Das, Life cycle assessment of carbon fiber-reinforced polymer composites. Int. J. Life Cycle Assess 16, 268–282 (2011)

    Article  Google Scholar 

  17. M. Moniruzzaman, K.I. Winey, Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  ADS  Google Scholar 

  18. E.D. Laird, C.Y. Li, Structure and morphology control in crystalline polymer-carbon nanotube nanocomposites. Macromolecules 46, 2877–2891 (2013)

    Article  ADS  Google Scholar 

  19. B. Arash, Q. Wang, V.K. Varadan, Mechanical properties of carbon nanotube/polymer composites. Sci. Rep. 4, 1–8 (2014)

    Article  Google Scholar 

  20. L.L. Vovchenko et al., Impedance characterization and microwave permittivity of multi-walled carbon nanotubes/BaTiO3/epoxy composites. Appl. Phys. A 126, 1–14 (2020)

    Article  Google Scholar 

  21. R. Rafiee, H. Zehtabzadeh, Predicting the strength of carbon nanotube reinforced polymers using stochastic bottom-up modeling. Appl. Phys. A 126, 1–13 (2020)

    Article  Google Scholar 

  22. I. Pełech et al., Magnetic and electrical properties of carbon nanotube/epoxy composites. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 254 (2020)

  23. W. Tan, J.C. Stallard, F.R. Smail, A.M. Boies, N.A. Fleck, The mechanical and electrical properties of direct-spun carbon nanotube mat-epoxy composites. Carbon 150, 489–504 (2019)

    Article  Google Scholar 

  24. S. Xie, W. Li, Z. Pan, B. Chang, S. Lianfeng, Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 61, 1153–1158 (2000)

    Article  ADS  Google Scholar 

  25. M. Russ, S.S. Rahatekar, K. Koziol, B. Farmer, H.X. Peng, Length-dependent electrical and thermal properties of carbon nanotube-loaded epoxy nanocomposites. Compos. Sci. Technol. 81, 42–47 (2013)

    Article  Google Scholar 

  26. J.P. Salvetat et al., Mechanical properties of carbon nanotubes. Appl. Phys. A 69, 255–260 (1999)

    Article  ADS  Google Scholar 

  27. J.P. Salvetat-Delmotte, A. Rubio, Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 40, 1729–1734 (2002)

    Article  Google Scholar 

  28. R. Pratyush Behera, P. Rawat, S. Kumar Tiwari, K. Kumar Singh, A brief review on the mechanical properties of Carbon nanotube reinforced polymer composites. Mater. Today Proc. 22, 2109–2117 (2019)

    Article  Google Scholar 

  29. X. Zhang et al., Temperature-dependent shear failure modes and tensile strength model of CNT/polymer nanocomposites. Compos. Commun. 25 (2021)

  30. V. Navneeth, S. Pranaav Sankar, R.R. Saran Prasanth, R. Vimal Samsingh, Investigation on the mechanical and stealth behavior of CNT based polymer composites. Mater. Today: Proc. 39, 1682–1687 (2021)

    Google Scholar 

  31. W.A. Chapkin, J.K. Wenderott, P.F. Green, A.I. Taub, Length dependence of electrostatically induced carbon nanotube alignment. Carbon 131, 275–282 (2018)

    Article  Google Scholar 

  32. Y. Battie et al., Optical anisotropy of single walled carbon nanotubes investigated by spectroscopic ellipsometry. Carbon 50, 4673–4679 (2012)

    Article  Google Scholar 

  33. H. Wang et al., Anisotropy in tribological performances of long aligned carbon nanotubes/polymer composites. Carbon 67, 38–47 (2014)

    Article  Google Scholar 

  34. G. Gkikas, N.M. Barkoula, A.S. Paipetis, Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos. B Eng. 43, 2697–2705 (2012)

    Article  Google Scholar 

  35. R. Abishera, R. Velmurugan, K.V.N. Gopal, Reversible plasticity shape memory effect in carbon nanotubes reinforced epoxy nanocomposites. Compos. Sci. Technol. 137, 148–158 (2016)

    Article  Google Scholar 

  36. P. Gupta, M. Rajput, N. Singla, V. Kumar, D. Lahiri, Electric field and current assisted alignment of CNT inside polymer matrix and its effects on electrical and mechanical properties. Polymer 89, 119–127 (2016)

    Article  Google Scholar 

  37. W.A. Chapkin et al., Real-time assessment of carbon nanotube alignment in a polymer matrix under an applied electric field via polarized Raman spectroscopy. Polym. Test. 56, 29–35 (2016)

    Article  Google Scholar 

  38. L.J. Lanticse et al., Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites. Carbon 44, 3078–3086 (2006)

    Article  Google Scholar 

  39. T.H. Nam et al., Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites. Compos. A Appl. Sci. Manuf. 64, 194–202 (2014)

    Article  Google Scholar 

  40. G. Wu, H. Zhan, Q.Q. Shi, J.N. Wang, Full on-line preparation of polymer composites reinforced with aligned carbon nanotubes. Compos. Sci. Technol. 200, 108472 (2020)

    Article  Google Scholar 

  41. D. Shi et al., Magnetic alignment of Ni/Co-coated carbon nanotubes in polystyrene composites. Compos. B Eng. 42, 1532–1538 (2011)

    Article  Google Scholar 

  42. M. Liu, H. Younes, H. Hong, G.P. Peterson, Polymer nanocomposites with improved mechanical and thermal properties by magnetically aligned carbon nanotubes. Polymer 166, 81–87 (2019)

    Article  Google Scholar 

  43. E. Moaseri, M. Karimi, M. Baniadam, M. Maghrebi, Improvements in mechanical properties of multi-walled carbon nanotube-reinforced epoxy composites through novel magnetic-assisted method for alignment of carbon nanotubes. Compos. A Appl. Sci. Manuf. 64, 228–233 (2014)

    Article  Google Scholar 

  44. M. Haghgoo, R. Ansari, M.K. Hassanzadeh-Aghdam, Prediction of electrical conductivity of carbon fiber-carbon nanotube-reinforced polymer hybrid composites. Compos. B Eng. 167, 728–735 (2019)

    Article  Google Scholar 

  45. A.I. Oliva-Avilés, F. Avilés, V. Sosa, Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon 49, 2989–2997 (2011)

    Article  Google Scholar 

  46. X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R Rep. 49, 89–112 (2005)

    Article  Google Scholar 

  47. M.V.C. Morais et al., On the effect of electric field application during the curing process on the electrical conductivity of single-walled carbon nanotubes–epoxy composites. Carbon 150, 153–167 (2019)

    Article  Google Scholar 

  48. Y.F. Zhu et al., Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J. Appl. Phys. 105 (2009)

  49. C.A. Martin et al., Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46, 877–886 (2005)

    Article  Google Scholar 

  50. M. Monti, M. Natali, L. Torre, J.M. Kenny, The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field. Carbon 50, 2453–2464 (2012)

    Article  Google Scholar 

  51. D. Zhang, C. Saukas, Y. He, R. Wang, A.I. Taub, Temperature dependence of single-walled carbon nanotube migration in epoxy resin under DC electric field. J. Mater. Sci. 55, 16220–16233 (2020)

    Article  ADS  Google Scholar 

  52. G. Pagani, M.J. Green, P. Poulin, M. Pasquali, Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication. Proc. Natl. Acad. Sci. 109, 11599–11604 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the helpful discussions provided by Dr. Wesley Chapkin graduated from University of Michigan. The authors also wish to thank Connor Saukas graduated from University of Michigan for setting up the experiment and Xingkang She for the assistance during the experiment.

Funding

The work was financially supported by the University of Michigan and the program of China Scholarships Council (No. 201706290165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan I. Taub.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., He, Y., Wang, R. et al. Kinetics of single-walled carbon nanotube migration in epoxy resin under DC electric field. Appl. Phys. A 128, 10 (2022). https://doi.org/10.1007/s00339-021-05170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05170-9

Keywords

Navigation