Skip to main content
Log in

Photocatalytic activities enhancement of manganese doped ZnO by decoration on CNT for degradation of organic pollutants under solar irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Globally untreated industrial wastewaters such as organic chemicals have contaminated soil, surface water, groundwater, and consequently the environment. Therefore, this study aimed to develop an efficient removal method using photocatalytic advanced oxidation processes under visible light of 47% of solar irradiation. A simultaneous synthesis of manganese doped zinc oxide (Mn doped ZnO) decorated on carbon nanotubes (CNT) was carried out using sol–gel method. The characterization results of XRD, FT-IR, FESEM, and TEM showed manganese doped zinc oxide was successfully synthesized and decorated on CNT. The synthesized photocatalyst was used for the degradation of methyl orange (MO) as a model of the environmental organic pollutants. Mn doped ZnO decorated on CNT bleached MO much faster than undoped ZnO and Mn doped ZnO upon its exposure to the visible light. The CNT enhanced photocatalytic activity of Mn-ZnO by increasing the surface area, distributing charge carriers, preventing agglomeration, as well as improving the active sites and oxygen adsorption in the suspension. This study demonstrates Mn-ZnO/CNT as a promising degradation agent for the organic pollutants. Future studies should be conducted to explore possible applications of this photocatalyst in the field of environmental science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I. Udom, M.K. Ram, E.K. Stefanakos, A.F. Hepp, D.Y. Goswami, One dimensional-ZnO nanostructures: SYNTHESIS, properties and environmental applications. Mater. Sci. Semicond. Process. 16, 2070–2083 (2013)

    Article  Google Scholar 

  2. S.Y. Lee, S.J. Park, TiO2 Photocatalyst for water treatment applications. J. Ind. Eng. Chem. 19, 1761–1769 (2013)

    Article  Google Scholar 

  3. D. Beydoun, R. Amal, G. Low, S. McEvoy, Role of nanoparticles in photocatalysis. J. Nanopart. Res. 1, 439–458 (1999)

    Article  ADS  Google Scholar 

  4. S. Danwittayakul, M. Jaisai, T. Koottatep, J. Dutta, Enhancement of photocatalytic degradation of methyl orange by supported zinc oxide nanorods/zinc stannate (ZnO/ZTO) on porous substrates. Am. Chem. Soc. 52, 13629–13636 (2013)

    Google Scholar 

  5. T. Xu, L. Zhang, H. Cheng, Y. Zhu, Applied catalysis B: environmental significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B Environ. 101, 382–387 (2011)

    Article  Google Scholar 

  6. J. Liqiang, S. Xiaojun, S. Jing, C. Weimin, X. Zili, D. Yaoguo, F. Honggang, Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Sol. Energy Mater. Sol. Cells 79, 133–151 (2003)

    Article  Google Scholar 

  7. N. Barka, S. Qourzal, A. Assabbane, Y. Ait-ichou, A. Nounah, H. Lachheb, A. Houas, Solar photocatalytic degradation of textile dyes on dynamic pilot plant using supported TiO2. Arab. J. Sci. Eng. 35, 131–137 (2010)

    Google Scholar 

  8. D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers, Photocatalytic degradation for environmental applications—a review. J. Chem. Technol. Biotechnol. 77, 102–116 (2002)

    Article  Google Scholar 

  9. C. Xu, L. Cao, G. Su, W. Liu, X. Qu, Y. Yu, Preparation, characterization and photocatalytic activity of co-doped ZnO powders. J. Alloys Compd. 497, 373–376 (2010)

    Article  Google Scholar 

  10. J. Matos, J. Laine, J.-M. Herrmann, Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania. J. Catal. 200, 10–20 (2001)

    Article  Google Scholar 

  11. G.G. Bessegato, J.C. Cardoso, M. Valnice, B. Zanoni, Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes. Catal. Today. 240, 100–106 (2015)

    Article  Google Scholar 

  12. M. Fernanda, K. Rajeshwar, J.C. Cardoso, M. Valnice, B. Zanoni, Chemosphere bisphenol a removal from wastewater using self-organized TiO2 nanotubular array electrodes. Chemosphere 78, 569–575 (2010)

    Article  ADS  Google Scholar 

  13. J.C. Cardoso, T.M. Lizier, M. Valnice, B. Zanoni, Environmental highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine. Appl. Catal. B Environ. 99, 96–102 (2010)

    Article  Google Scholar 

  14. Y. Abdollahi, A.H. Abdullah, U.I. Gaya, Z. Zainal, N.A. Yusof, A.H. Abdullah, U.I. Gaya, Z. Zainal, N.A. Yusof, Enhanced photodegradation of O-cresol in aqueous Mn (1%)-doped ZnO suspensions. Environ. Photochem. Part II 33, 1183–1189 (2011)

    Google Scholar 

  15. Y. Abdollahi, A. Halim, Photodegradation of p-cresol by zinc oxide under visible light. Int. J. Appl. Sci. Technol. 1, 99–105 (2011)

    Google Scholar 

  16. F. Maria, M. Paschoal, G. Pepping, Photoelectrocatalytic removal of bromate using Ti/TiO2 coated as a photocathode. Environ. Sci. Technol. 43, 7496–7502 (2009)

    Article  ADS  Google Scholar 

  17. M. Fernanda, M. Miyata, G. Julião, C. Queico, F. Leite, M. Valnice, B. Zanoni, Electrochimica acta inactivation and disposal of by-products from Mycobacterium smegmatis by photoelectrocatalytic oxidation using Ti/TiO2-Ag nanotube electrodes. Electrochim. Acta. 85, 33–41 (2012)

    Article  Google Scholar 

  18. M. Fernanda, M. Miyata, C. Queico, F. Leite, M. Valnice, B. Zanoni, A photoelectrocatalytic process that disinfects water contaminated with Mycobacterium kansasii and Mycobacterium avium. Water Res. 7, 1–10 (2013)

    Google Scholar 

  19. Y. Jin-Peng, F. Busolotti, S. Kera, U. Nobuo, Origin and role of gap state in organic semiconductor studied by UPS: as the nature of organic molecular crystals. Biomed. Mater. Accept. 50, 1–16 (2020)

    Google Scholar 

  20. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications. MDPI J. 3, 189–218 (2013)

    Google Scholar 

  21. S. Chowdhury, R. Balasubramanian, Graphene/semiconductor nanocomposites (Gsns) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: a review. Appl. Catal. B Environ. 160–161, 307–324 (2014)

    Article  Google Scholar 

  22. J. Kaur, S. Bansal, S. Singhal, Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Phys. B Phys. Condens. Matter. 416, 33–38 (2013)

    Article  ADS  Google Scholar 

  23. V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation. J. Hazard. Mater. 175, 33–44 (2010)

    Article  Google Scholar 

  24. R. Zha, R. Nadimicherla, X. Guo, Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J. Mater. Chem. A Mater. Energy Sustain. 3, 6565–6574 (2015)

    Article  Google Scholar 

  25. W.C. Oh, Y. Areerob, Photocatalytic CO2 reduction with new band gap energy evaluation from spectroscopic relationship of graphene-Mg2CuSnCoO6 composite bridged with organics. Phys. E Low Dimens. Syst. Nanostruct. 134, 114864 (2021)

    Article  Google Scholar 

  26. X. Ma, C. Wang, G. Wang, G. Li, S. Li, J. Wang, Y. Song, Three narrow band-gap semiconductors modified Z-scheme photocatalysts, Er3+:Y3Al5O12@NiGa2O4/(NiS, CoS2 or MoS2)/Bi2Sn2O7, for enhanced solar-light photocatalytic conversions of nitrite and sulfite. J. Ind. Eng. Chem. 66, 141–157 (2018)

    Article  Google Scholar 

  27. B. Thokchom, B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, High-performance Ambipolar Pentacene organic field-effect transistors on poly (vinyl alcohol) organic gate dielectric**. Adv. Mater. 17, 2315–2320 (2005)

    Article  Google Scholar 

  28. V. Chakrapani, J. Thangala, M.K. Sunkara, WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. Int. J. Hydrogen Energy. 34, 9050–9059 (2009)

    Article  Google Scholar 

  29. B.N. Pantha, J. Li, J.Y. Lin, H.X. Jiang, Evolution of phase separation in in-rich ingan alloys. Appl. Phys. Lett. 96, 11–13 (2010)

    Article  Google Scholar 

  30. J. Hensel, G. Wang, Y. Li, J.Z. Zhang, Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett. 10, 478–483 (2010)

    Article  ADS  Google Scholar 

  31. Z.G. Yu, C.E. Pryor, W.H. Lau, M.A. Berding, D.B. Macqueen, Core–shell nanorods for efficient photoelectrochemical hydrogen production. J. Phys. Chem. B. 109, 22913–22919 (2005)

    Article  Google Scholar 

  32. Y. Abdollahi, A.H. Abdullah, Z. Zainal, N.A. Yusof, Synthesis and characterization of manganese doped ZnO nanoparticles. Int. J. Basic Appl. Sci. 11, 62–69 (2011)

    Google Scholar 

  33. Y. Abdollahi, A. Zakaria, N.A. Sairi, Degradation of high level m-cresol by zinc oxide as photocatalyst. Fresenius Environ. Bull. 42, 1292–1297 (2013)

    Google Scholar 

  34. J. Moser, M. Gratzel, Inhibition of electron-hole recombination in substitutionally doped colloidal semiconductor crystallites. Helv. Chim. Acta. 70, 1596–1604 (1987)

    Article  Google Scholar 

  35. E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, M. Visca, Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. Am. Chem. Soc. 104, 2996–3002 (1982)

    Article  Google Scholar 

  36. W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Physc. Chem. 98, 13669–13679 (1994)

    Article  Google Scholar 

  37. Y. Abdollahi, A. Zakaria, N.A. Sairi, K.A. Matori, H. Reza, F. Masoumi, A.R. Sadrolhosseini, H. Jahangirian, Artificial neural network modelling of photodegradation in suspension of manganese doped zinc oxide nanoparticles under visible-light irradiation. Sci. World J. 2014, 1–10 (2014)

    Article  Google Scholar 

  38. S.K. Pardeshi, A.B. Patil, A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Sol. Energy. 82, 700–705 (2008)

    Article  ADS  Google Scholar 

  39. T.A. Saleh, The role of carbon nanotubes in enhancement of photocatalysis, in Syntheses and Applications of Carbon Nanotubes and Their Composites (2013), pp. 479–493

  40. B. Tryba, Increase of the photocatalytic activity of TiO2 by carbon and iron modifications. Int. J. Photoenergy. 2008, 1–15 (2007)

    Article  Google Scholar 

  41. B. Donkova, D. Dimitrov, M. Kostadinov, E. Mitkova, D. Mehandjiev, Catalytic and photocatalytic activity of lightly doped catalysts M: ZnO ( M = Cu, Mn ). Mater. Chem. Phys. 123, 563–568 (2010)

    Article  Google Scholar 

  42. R.D.C. Soltani, A. Rezaee, A.R. Khataee, M. Safari, Photocatalytic process by immobilized carbon black/Zno nanocomposite for dye removal from aqueous medium: optimization by response surface methodology. J. Ind. Eng. Chem. 20, 1861–1868 (2014)

    Article  Google Scholar 

  43. S.P. Kim, H.C. Choi, Preparation of carbon-nanotube-supported TiO2 for enhanced dye-degrading photocatalytic activity. Bull. Korean Chem. Soc. 36, 258–264 (2015)

    Article  Google Scholar 

  44. K. Pradeev Raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z.Z. Chowdhury, M.R. Bin Johan, F.A. Aziz, R.F. Rafique, R. Thamiz Selvi, R. Rathina Bala, Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. 13, 1 (2018)

    Article  Google Scholar 

  45. S.F. Shayesteh, A.A. Dizgah, Effect of doping and annealing on the physical properties of ZnO: Mg nanoparticles. Pramana J. Phys. 81, 319–330 (2013)

    Article  ADS  Google Scholar 

  46. O. Haibo, H.J. Feng, L. Cuiyan, C. Liyun, F. Jie, Synthesis of carbon doped ZnO with a porous structure and its solar-light photocatalytic properties. Mater. Lett. 111, 217–220 (2013)

    Article  Google Scholar 

  47. S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, Optical and photocatalytic properties of la-doped ZnO nanoparticles prepared via precipitation and mechanical milling method. Ceram. Int. 39, 2811–2819 (2013)

    Article  Google Scholar 

  48. M. Najam, M. Al-hinai, A. Al-hinai, J. Dutta, Visible light photocatalysis of mixed phase zinc stannate/zinc oxide nanostructures precipitated at room temperature in aqueous media. Ceram. Int. 40, 8743–8752 (2014)

    Article  Google Scholar 

  49. Y. Hao, S. Lou, S. Zhou, R. Yuan, G. Zhu, N. Li, Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles. Nanoscale Res. Lett. 7, 19–21 (2012)

    Article  ADS  Google Scholar 

  50. X. Xie, P. Shang, Z. Liu, Y. Lv, Y. Li, W. Shen, Synthesis of nanorod-shaped cobalt hydroxycarbonate and oxide with the mediation of ethylene glycol. J. Phys. Chem. C. 5, 2116–2123 (2010)

    Article  Google Scholar 

  51. R. Slama, F. Ghribi, A. Houas, C. Barthou, L. El Mir, Visible Photocatalytic properties of vanadium doped zinc oxide aerogel nanopowder. Thin Solid Films 519, 5792–5795 (2011)

    Article  ADS  Google Scholar 

  52. M. Ahmad, E. Ahmed, W. Ahmed, A. Elhissi, Z.L. Hong, N.R. Khalid, Enhancing visible light responsive photocatalytic activity by decorating Mn-doped ZnO nanoparticles on grapheme. Ceram. Int. 40, 10085–10097 (2014)

    Article  Google Scholar 

  53. W.-C. Lin, Y.-J. Lin, Effect of vanadium(IV)-doping on the visible light-induced catalytic activity of titanium dioxide catalysts for methylene blue degradation. Environ. Eng. Sci. 29, 447–452 (2012)

    Article  Google Scholar 

  54. D.L. Liao, C.A. Badour, B.Q. Liao, Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. J. Photochem. Photobiol. A Chem. 194, 11–19 (2008)

    Article  Google Scholar 

  55. W. Liu, T. He, Y. Wang, G. Ning, Z. Xu, X. Chen, X. Hu, Y. Wu, Y. Zhao, Synergistic adsorption-photocatalytic degradation effect and norfloxacin mechanism of ZnO/ZnS@BC under UV-light irradiation. Sci. Rep. 10, 1–12 (2020)

    Google Scholar 

  56. M. Irani, T. Mohammadi, S. Mohebbi, Photocatalytic degradation of methylene blue with ZnO nanoparticles; a joint experimental and theoretical study. J. Mex. Chem. Soc. 60, 218–225 (2016)

    Google Scholar 

  57. S. Jafari, B. Yahyaei, E. Kusiak-nejman, M. Sillanpää, Desalination and water treatment the influence of carbonization temperature on the modification of TiO2 in the removal of methyl orange from aqueous solution by adsorption. Desalin. Water Treat. 57, 18825–18835 (2016)

    Article  Google Scholar 

  58. W. Szeto, C.W. Kan, C.W.M. Yuen, S.W. Chan, K.H. Lam, Effective photodegradation of methyl orange using fluidized bed reactor loaded with cross-linked chitosan embedded nano-CdS photocatalyst. Int. J. Chem. Eng. 2014, 18–20 (2014)

    Article  Google Scholar 

  59. K. Pingmuang, J. Chen, W. Kangwansupamonkon, G.G. Wallace, S. Phanichphant, A. Nattestad, Composite photocatalysts containing BiVO4 for degradation of cationic dyes. Sci. Rep. 8929, 1–11 (2017)

    Google Scholar 

  60. V.H. Nguyen, Q. Thi, P. Bui, D.N. Vo, K.T. Lim, L.G. Bach, S.T. Do, T. Van Nguyen, V. Doan, T. Nguyen, T.D. Nguyen, Effective photocatalytic activity of sulfate-modified BiVO4 for the decomposition of methylene blue. MDPI J. 12, 1–19 (2019)

    Google Scholar 

  61. Y. Park, Y. Na, D. Pradhan, B. Min, Y. Sohn, Adsorption and UV/Visible photocatalytic performance of BiOI for methyl orange, rhodamine B and methylene blue: Ag and Ti-loading effects. R. Soc. Chem. 16, 3155–3167 (2014)

    Google Scholar 

  62. X. Wang, M. Utsumi, Y. Yang, D. Li, Y. Zhao, Z. Zhang, C. Feng, N. Sugiura, J.J. Cheng, Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2 heterojunction photocatalyst under simulated solar light irradiation. Appl. Surf. Sci. 325, 1–12 (2015)

    Article  ADS  Google Scholar 

  63. Y. Wang, Z. Shi, C. Fan, X. Wang, X. Hao, Y. Chi, Journal of solid state chemistry synthesis, characterization, and photocatalytic properties of BiOBr catalyst. J. Solid State Chem. 199, 224–229 (2013)

    Article  ADS  Google Scholar 

  64. A. Dodd, A. McKinley, M. Saunders, T. Tsuzuki, Mechanochemical synthesis of nanocrystalline SnO2–ZnO Photocatalysts. Nanotechnology 17, 692–698 (2006)

    Article  ADS  Google Scholar 

  65. D. Yu, R. Cai, Z. Liu, Studies on the photodegradation of rhodamine dyes on nanometer-sized zinc oxide. Spectrochim. Spectrochim. Acta Part A 60, 1617–1624 (2004)

    Article  ADS  Google Scholar 

  66. L. Jiang, L. Gao, Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Mater. Chem. Phys. 91, 313–316 (2005)

    Article  Google Scholar 

  67. L. Pan, X. Liu, Z. Sun, C.Q. Sun, Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis. J. Mater. Chem. A. 1, 8299 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Universiti Malaya under Universiti Malaya Research Grant HIR MoHE (UM.C/625/1/HIR/MOHE/SC/04) and Postgraduate Research Fund (PG105-2015B) for their funding supports. The authors extend their appreciation to Universiti Malaya Centre of Ionic Liquids (UMCiL) for providing the facilities.

Funding

Funding was provided by institut pengurusan dan pemantauan penyelidikan, universiti malaya, (UM.C/625/1/HIR/MOHE/SC/04) and universiti malaya (PG105-2015B, NOR ASRINA SAIRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Asrina Sairi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ab Wahab, N., Sairi, N.A. & Alias, Y. Photocatalytic activities enhancement of manganese doped ZnO by decoration on CNT for degradation of organic pollutants under solar irradiation. Appl. Phys. A 128, 59 (2022). https://doi.org/10.1007/s00339-021-05160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05160-x

Keywords

Navigation