Skip to main content
Log in

Effect of zinc doping on the structure and optical properties of iron oxide nanostructured films prepared by spray pyrolysis technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the current work, the effect of zinc doping on the structural and optical properties of iron oxide has been explored for optoelectronic applications. Undoped and different (2–10 wt%) Zn-doped iron oxide (Fe2O3/Zn) nanostructured films (nFs) were successfully prepared via spray pyrolysis technique. The structural, morphological, bonds vibrations and optical properties of the prepared films were examined using X-ray diffraction (XRD), scanning electron microscope (SEM), FT-IR and UV-Vis-NIR spectroscopy techniques, respectively. The XRD measurements reveal the formation of the rhombohedral hematite phase structure of iron oxide (α-Fe2O3) for all prepared films. The FT-IR spectra analysis exhibits the existence of absorption bands corresponded to the stretching and bending vibrations of Fe–O and O–Fe–O bonds, respectively. The UV–Vis–NIR measurements of the prepared samples indicate the significant effect of Zn doping on various optical properties of Fe2O3 films. The achieved optical bandgap of Fe2O3/Zn nFs is tuned from 2.38 eV (undoped Fe2O3) to 2.83 eV (10 wt% of Fe2O3/Zn). These findings are explained on the basis of the created localized energy levels and Burstein–Moss effect. As a novel result of this study, Fe2O3/Zn nFs are well-qualified for the use in modern optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Badawi, M.G. Althobaiti, Effect of Cu-doping on the structure, FT-IR and optical properties of Titania for environmental-friendly applications. Ceram. Int. 47(8), 11777–11785 (2021)

    Article  Google Scholar 

  2. A. Badawi, S.S. Alharthi, M.G. Althobaiti, A.N. Alharbi, H. Assaedi, H.I. Alkhammash, N. Al-Hosiny, Structure investigation and optical bandgap tuning of La-doped CuO nanostructured films prepared by spray pyrolysis technique. Appl. Phys. A 127(4), 235 (2021)

    Article  ADS  Google Scholar 

  3. A. Badawi, M.G. Althobaiti, S.S. Alharthi, A.M. Al-Baradi, Tailoring the optical properties of CdO nanostructures via barium doping for optical windows applications. Phys. Lett. A 411, 127553 (2021)

    Article  Google Scholar 

  4. S. Kurtaran, M. Kellegöz, S. Köse, Characterization of Gd doped CeO2 thin films grown by ultrasonic spray pyrolysis. Opt. Mater. 117, 111144 (2021)

    Article  Google Scholar 

  5. P. Albert, J. Narayanan, T. Arockiadoss, Indium-tin oxide regulated band gap of nitrogen-doped titanium oxide thin films for visible light photocatalyst. Appl. Phys. A 127(12), 900 (2021)

    Article  ADS  Google Scholar 

  6. S. Roy, M.P. Ghosh, S. Mukherjee, Introducing magnetic properties in Fe-doped ZnO nanoparticles. Appl. Phys. A 127(6), 451 (2021)

    Article  ADS  Google Scholar 

  7. Suman S. Chahal, A. Kumar P. Kumar (2020), Zn Doped α-Fe2O3: an efficient material for UV driven Photocatalysis and electrical Conductivity Curr. Comput.-Aided Drug Des. 10(4), 273

  8. S. Guo, H. Wang, W. Yang, H. Fida, L. You, K. Zhou, Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation. Appl. Catal. B: Environ. 262, 118250 (2020)

    Article  Google Scholar 

  9. R. Sivaranjani, A. Thayumanavan, S. Sriram, Photocatalytic activity of Zn-doped Fe2O3 nanoparticles: a combined experimental and theoretical study. Bull. Mater. Sci. 42(4), 185 (2019)

    Article  Google Scholar 

  10. R. Nikam, S. Rayaprol, S. Mukherjee, S.D. Kaushik, P.S. Goyal, P.D. Babu, S. Radha, V. Siruguri, Structure and magnetic properties of Mn doped α-Fe2O3. Phys B: Condens. Matter 574, 411663 (2019)

    Article  Google Scholar 

  11. A. Akbar, S. Bashir, S. Riaz, S. Naseem (2015), Magnetic Properties of Co-doped Fe2O3 Thin Films. Mater. Today: Proc. 2 (10, Part B), 5674–5678

  12. A.M. El Sayed, W.M. Morsi, α-Fe2O3 /(PVA + PEG) Nanocomposite films; synthesis, optical, and dielectric characterizations. J. Mater. Sci. 49(15), 5378–5387 (2014)

    Article  ADS  Google Scholar 

  13. M. Sharmin, J. Podder, Influence of Al doping on the structure and properties of Fe2O3 thin films: high transparency, wide band gap, ferromagnetic behavior. Semicond. Sci. Technol. 34(7), 075033 (2019)

    Article  ADS  Google Scholar 

  14. R.R. Salunkhe, C.D. Lokhande, Effect of film thickness on liquefied petroleum gas (LPG) sensing properties of SILAR deposited CdO thin films. Sens. Actuators, B Chem. 129(1), 345–351 (2008)

    Article  Google Scholar 

  15. B. Sahin, Y. Gülen, F. Bayansal, H.A. Çetinkara, H.S. Güder, Structural and optical properties of Ba-doped CdO films prepared by SILAR method. Superlattices Microstruct. 65, 56–63 (2014)

    Article  ADS  Google Scholar 

  16. N.E. Makori, I.A. Amatalo, P.M. Karimi, W.K. Njoroge, Optical and electrical properties of CdO: Sn thin films for solar cell applications. Int. J. Optoelectron. Eng. 4(1), 11–15 (2014)

    Google Scholar 

  17. C.L.E. Aquino, M.D.L. Balela, Thermally grown Zn-doped hematite (α-Fe2O3) nanostructures for efficient adsorption of Cr(VI) and Fenton-assisted degradation of methyl orange. SN Appl. Sci. 2(12), 2099 (2020)

    Article  Google Scholar 

  18. A. Abdel-Galil, M.S.A. Hussien, I.S. Yahia, Synthesis and optical analysis of nanostructured F-doped ZnO thin films by spray pyrolysis: transparent electrode for photocatalytic applications. Optic. Mater. 114, 110894 (2021)

    Article  Google Scholar 

  19. M. Vigneshwaran, R. Chandiramouli, B.G. Jeyaprakash, D. Balamurugan, Physical properties of spray deposited Mg doped CdO thin films. J. Appl. Sci. 12, 1754–1757 (2012)

    Article  ADS  Google Scholar 

  20. R.J. Deokate, S.M. Pawar, A.V. Moholkar, V.S. Sawant, C.A. Pawar, C.H. Bhosale, K.Y. Rajpure, Spray deposition of highly transparent fluorine doped cadmium oxide thin films. Appl. Surf. Sci. 254(7), 2187–2195 (2008)

    Article  ADS  Google Scholar 

  21. U. Khan, A. Akbar, H. Yousaf, S. Riaz, S. Naseem (2015), Ferromagnetic properties of al-doped Fe2O3 thin films by sol-gel. Mater. Today: Proc. 2 (10, Part B), 5415–5420

  22. A. Badawi, E.M. Ahmed, N.Y. Mostafa, F. Abdel-Wahab, S.E. Alomairy, Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles. J. Mater. Sci. Mater. Electron. 28(15), 10877–10884 (2017)

    Article  Google Scholar 

  23. B. Jansi Rani, G. Ravi, R. Yuvakkumar, S. Ravichandran, F. Ameen, S. AlNadhary, Sn doped α-Fe2O3 (Sn=0,10,20,30 wt%) photoanodes for photoelectrochemical water splitting applications. Renew Energy 133, 566–574 (2019)

    Article  Google Scholar 

  24. A. Lassoued, Synthesis and characterization of Zn-doped α-Fe2O3 nanoparticles with enhanced photocatalytic activities. J. Mol. Struc. 1239, 130489 (2021)

    Article  Google Scholar 

  25. M.T. Rahman, M.A. Hoque, G.T. Rahman, M.M. Azmi, M.A. Gafur, R.A. Khan, M.K. Hossain, Fe2O3 nanoparticles dispersed unsaturated polyester resin based nanocomposites: effect of gamma radiation on mechanical properties. Radiat. Eff. Defects Solids 174(5–6), 480–493 (2019)

    Article  ADS  Google Scholar 

  26. N.H.A. Ngadiman, A. Idris, M. Irfan, D. Kurniawan, N.M. Yusof, R. Nasiri, γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold. J. Mech. Behav. Biomed. Mater. 49, 90–104 (2015)

    Article  Google Scholar 

  27. P Scherrer (1918). Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen Math Klasse, 29, 98–100

  28. V.V. Jadhavar, V.D. Mote, B.S. Munde, Study of structural, optical, and paramagnetic properties of Zn1−xCoxS nanoparticles prepared via co-precipitation. J. Mater. Sci.: Mater. Electron. 31, 17297–17306 (2020)

    Google Scholar 

  29. A. Badawi, Enhancement of the optical properties of PVP using Zn1-xSnxS for UV-region optical applications. Appl. Phys. A 127(1), 51 (2021)

    Article  ADS  Google Scholar 

  30. A. Badawi, Engineering the energy bandgap of lead cobalt sulfide quantum dots for visible light optoelectronics. J. Mater. Sci.: Mater. Electron. 31(20), 17726–17735 (2020)

    Google Scholar 

  31. A. Badawi, A.H. Al Otaibi, A.M. Albaradi, N. Al-Hosiny, S.E. Alomairy, Tailoring the energy band gap of alloyed Pb1−xZnxS quantum dots for photovoltaic applications. J. Mater. Sci. Mater. Electron. 29(24), 20914–20922 (2018)

    Article  Google Scholar 

  32. A. Badawi, Tunable energy band gap of Pb1-xCoxS quantum dots for optoelectronic applications. Superlattices Microstruct. 125, 237–246 (2019)

    Article  ADS  Google Scholar 

  33. H.M.H. Zakaly, H.A. Saudi, S.A.M. Issa, M. Rashad, A.I. Elazaka, H.O. Tekin, Y.B. Saddeek, Alteration of optical, structural, mechanical durability and nuclear radiation attenuation properties of barium borosilicate glasses through BaO reinforcement: experimental and numerical analyses. Ceram. Int. 47(4), 5587–5596 (2021)

    Article  Google Scholar 

  34. A. Badawi, Effect of the non-toxic Ag2S quantum dots size on their optical properties for environment-friendly applications. Phys E 109, 107–113 (2019)

    Article  Google Scholar 

  35. R. Al-Gaashani, S. Radiman, N. Tabet, A.R. Daud, Rapid synthesis and optical properties of hematite (α-Fe2O3) nanostructures using a simple thermal decomposition method. J. Alloy. Compd. 550, 395–401 (2013)

    Article  Google Scholar 

  36. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, Characterization and some physical studies of PVA/PVP filled with MWCNTs. J. Market. Res. 8(1), 904–913 (2019)

    Google Scholar 

  37. A.A. Atta, M.M. El-Nahass, K.M. Elsabawy, M.M. Abd El-Raheem, A.M. Hassanien, A. Al Huthali, A. Badawi, A. Merazga, Optical characteristics of transparent samarium oxide thin films deposited by the radio-frequency sputtering technique. Pramana 87(5), 72 (2016)

    Article  ADS  Google Scholar 

  38. A. Bouzidi, K. Omri, W. Jilani, H. Guermazi, I.S. Yahia, Influence of TiO2 Incorporation on the Microstructure, Optical, and Dielectric Properties of TiO2/Epoxy Composites. J. Inorg. Organomet. Polym Mater. 28(3), 1114–1126 (2018)

    Article  Google Scholar 

  39. O.G. Abdullah, S.B. Aziz, M.A. Rasheed, Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte. Results Phys. 6, 1103–1108 (2016)

    Article  ADS  Google Scholar 

  40. N. Badi, Y. Al-Douri, S. Khasim, Effect of nitrogen doping on structural and optical properties of MgxZn1-xO ternary alloys. Opt. Mater. 89, 554–558 (2019)

    Article  ADS  Google Scholar 

  41. K. Gherab, Y. Al-Douri, U. Hashim, R. Khenata, A. Bouhemadou, M. Ameri, Temperature effect to investigate optical and structural properties of AZO nanostructures for optoelectronics. Bull. Mater. Sci. 44(1), 39 (2021)

    Article  Google Scholar 

  42. A. Badawi, S.S. Alharthi, H. Assaedi, A.N. Alharbi, M.G. Althobaiti, Cd0.9Co0.1S nanostructures concentration study on the structural and optical properties of SWCNTs/PVA blend. Chem. Phys. Lett. 775, 138701 (2021)

    Article  Google Scholar 

  43. A. Badawi, Engineering the optical properties of PVA/PVP polymeric blend in situ using tin sulfide for optoelectronics. Appl. Phys. A 126(5), 335 (2020)

    Article  ADS  Google Scholar 

  44. A. Badawi, S.S. Alharthi, H. Assaedi, N. Al-Hosiny, Effect of the solar irradiation on the structure and optical properties of Gafchromic films. Appl. Phys. A 127(4), 272 (2021)

    Article  ADS  Google Scholar 

  45. Z.K. Heiba, M.B. Mohamed, A. Badawi, Structure, optical and electronic characteristics of iron-doped cadmium sulfide under nonambient atmosphere. Appl. Phys. A 127(3), 166 (2021)

    Article  ADS  Google Scholar 

  46. H. Benamra, H. Saidi, A. Attaf, M.S. Aida, A. Derbali, N. Attaf, Physical properties of Al-doped ZnS thin films prepared by ultrasonic spray technique. Surf. Interfaces 21, 100645 (2020)

    Article  Google Scholar 

  47. B. Yan, Y. Wang, T. Jiang, X. Wu, Synthesis and enhanced photocatalytic property of La-doped CuO nanostructures by electrodeposition method. J. Mater. Sci.: Mater. Electron. 27(5), 5389–5394 (2016)

    Google Scholar 

  48. P.K. Manoj, B. Joseph, V.K. Vaidyan, D.S.D. Amma, Preparation and characterization of indium-doped tin oxide thin films. Ceram. Int. 33(2), 273–278 (2007)

    Article  Google Scholar 

  49. R. Ranjithkumar, A. Albert Irudayaraj, G. Jayakumar, A. Dhayal Raj, S. Karthick, R. Vinayagamoorthy, Synthesis and properties of CdO and Fe doped CdO nanoparticles. Mater. Today: Proc. 3(6), 1378–1382 (2016)

    Google Scholar 

  50. A.T. Ravichandran, A. Robert Xavier, K. Pushpanathan, B.M. Nagabhushana, R. Chandramohan, Structural and optical properties of Zn doped CdO nanoparticles synthesized by chemical precipitation method. J. Mater. Sci.: Mater. Electron. 27(3), 2693–2700 (2016)

    Google Scholar 

  51. Z.K. Heiba, M.B. Mohamed, H. El Shimy, A. Badawi, Modifying the electronic and optical properties of nano-ZnS via doping with Mn and Fe. J. Mater. Sci.: Mater. Electron. 32, 12358–12370 (2021)

    Google Scholar 

  52. T. Ahmad, S. Khatoon, K. Coolahan, S.E. Lofland, Structural characterization, optical and magnetic properties of Ni-doped CdO dilute magnetic semiconductor nanoparticles. J. Mater. Res. 28(9), 1245–1253 (2013)

    Article  ADS  Google Scholar 

  53. E. Jalali-Moghadam, Z. Shariatinia, Al3+ doping into TiO2 photoanodes improved the performances of amine anchored CdS quantum dot sensitized solar cells. Mater. Res. Bull. 98, 121–132 (2018)

    Article  Google Scholar 

  54. A. Javed, A. Qurat ul, M. Bashir, Controlled growth, structure and optical properties of Fe-doped cubic π- SnS thin films. J. Alloys Compd. 759, 14–21 (2018)

    Article  Google Scholar 

  55. P. Velusamy, R. Ramesh Babu, K. Ramamurthi, E. Elangovan, J. Viegas, Effect of La doping on the structural, optical and electrical properties of spray pyrolytically deposited CdO thin films. J. Alloys Compd. 708, 804–812 (2017)

    Article  Google Scholar 

  56. A. Moharana, D. Kumar, A. Kumar, Synthesis of Ni doped iron oxide nanoparticles and their dielectric properties. J. Phys.: Conf. Ser. 1531, 012113 (2020)

    Google Scholar 

  57. K. Kaviyarasu, E. Manikandan, P. Paulraj, S.B. Mohamed, J. Kennedy, One dimensional well-aligned CdO nanocrystal by solvothermal method. J. Alloy. Compd. 593, 67–70 (2014)

    Article  Google Scholar 

  58. H. Lin, J. Long, Q. Gu, W. Zhang, R. Ruan, Z. Li, X. Wang, In situ IR study of surface hydroxyl species of dehydrated TiO2: towards understanding pivotal surface processes of TiO2 photocatalytic oxidation of toluene. Phys. Chem. Chem. Phys. 14(26), 9468–9474 (2012)

    Article  Google Scholar 

  59. A. Singh, V. Goyal, J. Singh, M. Rawat, Structural, morphological, optical and photocatalytic properties of green synthesized TiO2 NPs. Current Res. Green Sustain. Chem. 3, 100033 (2020)

    Article  Google Scholar 

  60. P. Concepción, in Infrared Spectroscopy - Principles, Advances, and Applications (IntechOpen, 2018).

  61. R. Mehdizadeh, L.A. Saghatforoush, S. Sanati, Solvothermal synthesis and characterization of α-Fe2O3 nanodiscs and Mn3O4 nanoparticles with 1,10-phenanthroline. Superlattices Microstruct. 52(1), 92–98 (2012)

    Article  ADS  Google Scholar 

  62. R. Kant, D. Kumar, V. Dutta, High coercivity α-Fe2O3 nanoparticles prepared by continuous spray pyrolysis. RSC Adv. 5(65), 52945–52951 (2015)

    Article  ADS  Google Scholar 

  63. S.A. Mansour, A.H. Farha, M.F. Kotkata, Sol–gel synthesized Co-doped anatase TiO2 Nanoparticles: structural, optical, and magnetic characterization. J. Inorg. Organomet. Polym Mater. 29(4), 1375–1382 (2019)

    Article  Google Scholar 

  64. A. El Mragui, Y. Logvina, L. Pinto da Silva, Synthesis of Fe- and Co-doped TiO(2) with improved photocatalytic activity under visible irradiation toward carbamazepine degradation. Materials 12(23), 3874 (2019)

    Article  ADS  Google Scholar 

  65. A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, H. Talaat, Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells. Sol. Energy 88, 137–143 (2013)

    Article  ADS  Google Scholar 

  66. M. Thambidurai, N. Muthukumarasamy, A. Ranjitha, D. Velauthapillai, Structural and optical properties of Ga-doped CdO nanocrystalline thin films. Superlattices Microstruct. 86, 559–563 (2015)

    Article  ADS  Google Scholar 

  67. A. Garzon-Roman, C. Zuñiga-Islas, E. Quiroga-González, Immobilization of doped TiO2 nanostructures with Cu or In inside of macroporous silicon using the solvothermal method: morphological, structural, optical and functional properties. Ceram. Int. 46(1), 1137–1147 (2020)

    Article  Google Scholar 

  68. P.K. Chakraborty, G.C. Datta, K.P. Ghatak, The simple analysis of the Burstein-Moss shift in degenerate n-type semiconductors. Physica B 339(4), 198–203 (2003)

    Article  ADS  Google Scholar 

  69. C. Aydın, O.A. Al-Hartomy, A.A. Al-Ghamdi, F. Al-Hazmi, I.S. Yahia, F. El-Tantawy, F. Yakuphanoglu, Controlling of crystal size and optical band gap of CdO nanopowder semiconductors by low and high Fe contents. J. Electroceram. 29(2), 155–162 (2012)

    Article  Google Scholar 

  70. R. Leelavati, R. Kumar, Kumar, Structural and optical studies of Mn2+ substituted CdO nano-particles. Appl. Phys. A 127(4), 249 (2021)

    Article  ADS  Google Scholar 

  71. S.H. Mohamed, R. Drese, Structural and optical properties of direct current sputtered zinc aluminum oxides with a high Al concentration. Thin Solid Films 513(1), 64–71 (2006)

    Article  ADS  Google Scholar 

  72. S.H. Mohamed, O. Kappertz, J.M. Ngaruiya, T. Niemeier, R. Drese, R. Detemple, M.M. Wakkad, M. Wuttig, Influence of nitrogen content on properties of direct current sputtered TiOxNy films. Physica Status Solidi (a) 201(1), 90–102 (2004)

    Article  ADS  Google Scholar 

  73. A.A. Aboud, A. Mukherjee, N. Revaprasadu, A.N. Mohamed, The effect of Cu-doping on CdS thin films deposited by the spray pyrolysis technique. J. Market. Res. 8(2), 2021–2030 (2019)

    Google Scholar 

  74. H. Ben Jbara, D. Abdelkader, F. Chaffar Akkari, M. Kanzari, M. Arab Pour Yazdi, A. Billard, Preparation of Cu–Fe–O thin films via post oxidation of iron/copper bilayers: structural, optical and electrical properties. Optic. Quantum Electro. 51(4), 99 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Taif University Researchers Supporting Project number (TURSP-2020/248), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Badawi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badawi, A., Althobaiti, M.G., Alharthi, S.S. et al. Effect of zinc doping on the structure and optical properties of iron oxide nanostructured films prepared by spray pyrolysis technique. Appl. Phys. A 128, 123 (2022). https://doi.org/10.1007/s00339-021-05154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05154-9

Keywords

Navigation