Skip to main content
Log in

Phase stability, mechanical and optoelectronic properties of lanthanum chromite-based perovskite oxide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural, magnetic, electronic, optical and mechanical properties of lanthanum chromite LaCrO3 were investigated in cubic (Pm-3m) and orthorhombic (Pbnm) phases by the first-principles method based on the density functional theory. In this study, the WC-GGA with additional Hubbard potential U and Tran–Blaha-modified Becke–Johnson potential (TB-mBJ) were used. The structure optimization was accomplished for ferromagnetic (FM), A-type (A-AFM), C-type (C-AFM) and G-type (G-AFM). Both O-LaCrO3 and C-LaCrO3 phases were stable in the G-AFM state. The density of states and band structure revealed the existence of a wide band gap calculated with GGA + U and TB-mBJ, these two methods provide the accurate results for the band gap which are in good agreement with experimental values. The dielectric functions and optical proprieties were also calculated such as the absorption coefficient, refractivity index and the energy loss function. The elastic properties such as bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio as well as the anisotropic factors were investigated. It has been shown that O-LaCrO3 and C-LaCrO3 phases were mechanically stable. Finally, the average sound velocity and the Debye temperatures of LaCrO3 were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8:
Fig. 9
Fig. 10
Fig. 11:
Fig. 12:
Fig. 13

Similar content being viewed by others

References

  1. N. Orlovskaya, A. Coratolo, C. Johnson, R. Gemmen, Structural characterization of lanthanum chromite perovskite coating deposited by magnetron sputtering on an iron-based chromium-containing alloy as a promising interconnect material for SOFCs. J. Am. Ceram. Soc. 87(10), 1981–1987 (2004)

    Article  Google Scholar 

  2. K. Hilpert et al., Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). J. Eur. Ceram. Soc. 23(16), 3009–3020 (2003)

    Article  Google Scholar 

  3. Z. Feng, C. Zeng, Oxidation behavior and electrical property of ferritic stainless steel interconnects with a Cr–La alloying layer by high-energy micro-arc alloying process. J. Power Sources 195(21), 7370–7374 (2010)

    Article  ADS  Google Scholar 

  4. L. Xishuang, L. Jianguo, G. Yingzhou, Z. Han, L. Fengmin, L. Geyu, Novel NASICON-based H2 sensor with insensitive reference electrode and buried Au sensing electrode. Sens. Actuators B Chem. 185, 77–83 (2013)

    Article  Google Scholar 

  5. S. Wang, Y. Dong, B. Lin, J. Gao, X. Liu, G. Meng, Fabrication of dense LaCrO3-based interconnect thin membrane on anode substrates by co-firing. Mater. Res. Bull. 44(11), 2127–2133 (2009)

    Article  Google Scholar 

  6. S. Wang, M. Liu, Y. Dong, K. Xie, X. Liu, G. Meng, Influence of Cr deficiency on sintering character and properties of SOFC interconnect material La0.7Ca0.3Cr1−xO3−δ. Mater. Res. Bull. 43(10), 2607–2616 (2008)

    Article  Google Scholar 

  7. N. Noor, U. Anwar, A. Mahmood, Investigation of the rare earth-based LaYO3 (Y= Cr and Mn) perovskites by ab-initio approach. Chem. Phys. Lett. 739, 137031 (2020)

    Article  Google Scholar 

  8. S. Geller, P. Raccah, Phase transitions in perovskitelike compounds of the rare earths. Phys. Rev. B 2(4), 1167 (1970)

    Article  ADS  Google Scholar 

  9. G. Tompsett, N. Sammes, Characterisation of the SOFC material, LaCrO3, using vibrational spectroscopy. J. Power Sources 130(1–2), 1–7 (2004)

    Article  ADS  Google Scholar 

  10. B. Tiwari, M. Rao, A. Dixit, Ground state electronic and magnetic properties of LaCrO3 system. Adv. Mater. Res. 585, 274–278 (2012). (Trans Tech Publ.)

    Article  Google Scholar 

  11. J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, T. Yang, Organic light-emitting diodes with AZO films as electrodes. Synth. Metals 114(3), 251–254 (2000)

    Article  Google Scholar 

  12. T. Arima, Y. Tokura, J. Torrance, Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B 48(23), 17006 (1993)

    Article  ADS  Google Scholar 

  13. Z. Yang, Z. Huang, L. Ye, X. Xie, Influence of parameters U and J in the LSDA+U method on electronic structure of the perovskites La M O 3 (M = Cr, Mn, Fe, Co, Ni). Phys. Rev. B 60(23), 15674 (1999)

    Article  ADS  Google Scholar 

  14. P. Ravindran, R. Vidya, H. Fjellvåg, A. Kjekshus, Electronic structure and excited-state properties of perovskite-like oxides. J. Cryst. Growth 268(3–4), 554–559 (2004)

    Article  ADS  Google Scholar 

  15. K.P. Ong, P. Blaha, P. Wu, Origin of the light green color and electronic ground state of LaCrO3. Phys. Rev. B 77(7), 073102 (2008)

    Article  ADS  Google Scholar 

  16. B. Sabir, G. Murtaza, R.A. Khalil, Ab-initio prediction of structure stability, electromagnetic, optical and thermoelectric behavior of orthorhombic LaXO3 (X = Cr, Mn, Fe): for device application. J. Mol. Graph. Model. 94, 107482 (2020)

    Article  Google Scholar 

  17. N. Soltani, S. Hosseini, A. Kompany, Nanoscale ab-initio calculations of optical and electronic properties of LaCrO3 in cubic and rhombohedral phases. Physica B 404(21), 4007–4014 (2009)

    Article  ADS  Google Scholar 

  18. Q.G. Song, L.L. Song, H. Zhao, T. Wei, J.H. Kang, The structural stabilities and electronic properties of orthorhombic and rhombohedral LaCrO3—a first-principles study. Adv. Mater. Res. 622, 734–738 (2013). (Trans Tech Publ.)

    Google Scholar 

  19. P. Hohenberg, W. Kohn, Density functional theory (DFT). Phys. Rev 136, B864 (1964)

    Article  ADS  Google Scholar 

  20. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties, 2001

  22. Z. Wu, R.E. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 73(23), 235116 (2006)

    Article  ADS  Google Scholar 

  23. V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44(3), 943 (1991)

    Article  ADS  Google Scholar 

  24. A. Liechtenstein, V.I. Anisimov, J. Zaanen, Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 52(8), R5467 (1995)

    Article  ADS  Google Scholar 

  25. P. B. Yagoubi, Etude des Propriétés Optoélectroniques, Magnétiques et Thermodynamiques des Pérovskites et des Doubles Pérovskites, Université de Mostaganem, 2020

  26. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  ADS  Google Scholar 

  27. Z. Zajtseva, A. Litvin, S. Ostapenko, Crystal-structure of lanthanum chromite. Dopovidi Akademii Nauk Ukrainskoi RSR Seriya B-Geologichni Khimichni ta Biologichni Nauki 12, 1094–1096 (1977)

    Google Scholar 

  28. S.V. Naray-Szabo, Die Strukturen von Verbindungen ABO3 „Schwesterstrukturen. “. Naturwissenschaften 31, 466–466 (1943)

    Article  ADS  Google Scholar 

  29. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71(11), 809 (1947)

    Article  ADS  MATH  Google Scholar 

  30. M. Tseggai, P. Nordblad, R. Tellgren, H. Rundlöf, G. Andrè, F. Bourèe, Synthesis, nuclear structure, and magnetic properties of LaCr1−yMnyO3 (y = 0, 0.1, 0.2, and 0.3). J. Alloys Compd. 457(1–2), 532–540 (2008)

    Article  Google Scholar 

  31. S. Dabaghmanesh, N. Sarmadian, E.C. Neyts, B. Partoens, A first principles study of p-type defects in LaCrO3. Phys. Chem. Chem. Phys. 19(34), 22870–22876 (2017)

    Article  Google Scholar 

  32. P. Sushko, L. Qiao, M. Bowden, T. Varga, G. Exarhos, F. Urban, D. Barton III., S.A. Chambers, Multiband optical absorption controlled by lattice strain in thin-film LaCrO3. Phys. Rev. Lett. 110(7), 077401 (2013)

    Article  ADS  Google Scholar 

  33. S.A. Chambers, L. Qiao, T.C. Droubay, T.C. Kaspar, B.W. Arey, P. Sushko, Band alignment, built-in potential, and the absence of conductivity at the LaCrO3/SrTiO3 (001) heterojunction. Phys. Rev. Lett. 107(20), 206802 (2011)

    Article  ADS  Google Scholar 

  34. M. Fox, Optical properties of solids, ed: American Association of Physics Teachers, 2002

  35. A. Slassi, Electronic structure and optical properties of Cu3PX4 (X = S and Se): solar cell made of abundant materials. Mater. Sci. Semicond. Process. 39, 217–222 (2015)

    Article  Google Scholar 

  36. B. Xu, X. Li, J. Sun, L. Yi, Electronic structure, ferroelectricity and optical properties of CaBi2 Ta2 O9. Eur. Phys. J. B 66(4), 483–487 (2008)

    Article  ADS  Google Scholar 

  37. S.Z. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvåg, B. Svensson, Electronic structure and optical properties of Zn X (X = O, S, Se, Te): a density functional study. Phys. Rev. B 75(15), 155104 (2007)

    Article  ADS  Google Scholar 

  38. S. Loughin, R. French, L. De Noyer, W. Ching, Y. Xu, Critical point analysis of the interband transition strength of electrons. J. Phys. D Appl. Phys. 29(7), 1740 (1996)

    Article  ADS  Google Scholar 

  39. E.A. Albanesi, E.L. Peltzer y Blanca, A. Petukhov, Optical spectra of IV–VI semiconductors PbS, PbSe and PbTe. Comput. Mater. Sci 32, 85–95 (2005)

    Article  Google Scholar 

  40. S. Azam, A. Reshak, Electronic structure of 1, 3-dicarbomethoxy4, 6-benzenedicarboxylic acid: density functional approach. Int. J. Electrochem. Sci 8, 10359–10375 (2013)

    Google Scholar 

  41. X. Gonze et al., First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25(3), 478–492 (2002)

    Article  Google Scholar 

  42. X. Gonze et al., Recent developments in the ABINIT software package. Comput. Phys. Commun. 205, 106–131 (2016)

    Article  ADS  Google Scholar 

  43. M.K. Gupta et al., Spin–phonon coupling and thermodynamic behaviour in YCrO3 and LaCrO3: inelastic neutron scattering and lattice dynamics. J. Phys. Condens. Matter 32(50), 505402 (2020)

    Article  Google Scholar 

  44. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954)

    MATH  Google Scholar 

  45. O. Beckstein, J. Klepeis, G. Hart, O. Pankratov, First-principles elastic constants and electronic structure of α-Pt 2 Si and PtSi. Phys. Rev. B 63(13), 134112 (2001)

    Article  ADS  Google Scholar 

  46. W. Voigt, Lehrbuch der Kristallphysik (Textbook of Crystal Physics) (BG Teubner, Leipzig, 1928)

    Google Scholar 

  47. A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech. 9, 49–58 (1929)

    Article  Google Scholar 

  48. R. Hill, On discontinuous plastic states, with special reference to localized necking in thin sheets. J. Mech. Phys. Solids 1(1), 19–30 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  49. Z. Hashin, S. Shtrikman, On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10(4), 335–342 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J. Appl. Phys. 84(9), 4891–4904 (1998)

    Article  ADS  Google Scholar 

  51. A.M. Coratolo et al., Nanoindentation of LaCrO3 thin films. J. Mater. Sci. 41(10), 3105–3111 (2006)

    Article  ADS  Google Scholar 

  52. S. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(367), 823–843 (1954)

    Article  Google Scholar 

  53. Q.-J. Liu, Z.-T. Liu, L.-P. Feng, First-principles calculations of structural, electronic and optical properties of tetragonal SnO2 and SnO. Comput. Mater. Sci. 47(4), 1016–1022 (2010)

    Article  Google Scholar 

  54. D. Chung, W. Buessem, The elastic anisotropy of crystals. J. Appl. Phys. 38(5), 2010–2012 (1967)

    Article  ADS  Google Scholar 

  55. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985)

    MATH  Google Scholar 

  56. N. Guechi et al., Structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn2P2. Solid State Sci. 29, 12–23 (2014)

    Article  Google Scholar 

  57. E. Deligoz, Y. Ciftci, P. Jochym, K. Colakoglu, The first principles study on PtC compound. Mater. Chem. Phys. 111(1), 29–33 (2008)

    Article  Google Scholar 

  58. V. Tvergaard, J.W. Hutchinson, Microcracking in ceramics induced by thermal expansion or elastic anisotropy. J. Am. Ceram. Soc. 71(3), 157–166 (1988)

    Article  ADS  Google Scholar 

  59. O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24(7), 909–917 (1963)

    Article  ADS  Google Scholar 

  60. V. Bannikov, I. Shein, A. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3. Phys. Status Solidi RRL-Rapid Res. Lett. 1(3), 89–91 (2007)

    Article  ADS  Google Scholar 

  61. Y. Du, Z.X. Cheng, X.-L. Wang, S.X. Dou, Structure, magnetic, and thermal properties of Nd1−x Lax CrO3 (0 ≤ x ≤ 1.0). J. Appl. Phys. 108(9), 093914 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Cheriet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koriba, I., Lagoun, B., Cheriet, A. et al. Phase stability, mechanical and optoelectronic properties of lanthanum chromite-based perovskite oxide. Appl. Phys. A 128, 82 (2022). https://doi.org/10.1007/s00339-021-05150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05150-z

Keywords

Navigation