Skip to main content

Advertisement

Log in

MgO nanoparticles with altered structural and optical properties by doping (Er3+) rare earth element for improved photocatalytic activity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The preparation of pure MgO- and Er3+-doped MgO nanostructures using a facile wet chemical process is described in this work. As dopants, various concentrations (1 wt%, 3 wt%, 5 wt%) of Er were utilized. The optical, structural, topological, compositional, and photocatalytic properties of the produced nanomaterials were studied. It was observed that differing Er3+ concentrations have a significant impact on the band gap of pure MgO nanomaterials. A considerable reduction in band gap energy was achieved from 3.81 to 3.46 eV. The point zero charge (PZC) of the synthesized nanomaterials is also determined using salt titration method. The pH-dependent photocatalytic activities were also studied. Under UV irradiation, the 5wt% Er: MgO catalyst shows high efficiency in photodegradation of methyl orange (anionic) (79% at pH 4) and methylene blue (cationic) dye (88% at pH 12).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Rastogi, M. Zivcak, O. Sytar, H.M. Kalaji, X. He, S. Mbarki, M. Brestic, Impact of metal and metal oxide nanoparticles on plant: a critical review. Front. Chem. 5, 1–16 (2017)

    Article  Google Scholar 

  2. M.S. Chavali, M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci 1, 607 (2019)

    Article  Google Scholar 

  3. L. Cai, J. Chen, Z. Liu, H. Wang, H. Yang, W. Ding, Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front. Microbiol. 9, 1–19 (2018)

    Article  Google Scholar 

  4. Moorthy SK, Ashok CH, Rao KV, Viswanathan C (2015) Synthesis and characterization of Mgo nanoparticles by neem leaves through green method. In: Materials Today: Proceedings. Elsevier Ltd., pp 4360–4368.

  5. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40(3–4), 997–1026 (2005)

    Article  Google Scholar 

  6. I.M. Banat, P. Nigam, D. Singh, R. Marchant, Microbial decolorization of textile-dyecontaining effluents: a review. Biores. Technol. 58(3), 217–227 (1996)

    Article  Google Scholar 

  7. Z. Bai, Y. Zheng, Z. Zhang, One-pot synthesis of highly efficient MgO for the removal of Congo red in aqueous solution. J. Mater. Chem. A 5(14), 6630–6637 (2017)

    Article  Google Scholar 

  8. S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J. Environ. Sci. 65, 201–222 (2018)

    Article  Google Scholar 

  9. S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol., C 31, 1–35 (2017)

    Article  Google Scholar 

  10. Y.H. Li, J.Y. Li, Y.J. Xu, Bimetallic nanoparticles as co-catalysts for versatile photo-redox catalysis. EnergyChem 3, 100047 (2020)

    Article  Google Scholar 

  11. B. Weng, M.Y. Qi, C. Han, Z.R. Tang, Y.J. Xu, Photo-corrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective. ACS Catal. 9(5), 4642–4687 (2019)

    Article  Google Scholar 

  12. F. Zhang, Y.H. Li, J.Y. Li, Z.R. Tang, Y.J. Xu, 3D graphene-based gel photocatalysts for environmental pollutants degradation. Environ. Pollut. 253, 365–376 (2019)

    Article  Google Scholar 

  13. M.Q. Yang, N. Zhang, Y. Wang, Y.J. Xu, Metal-free, robust, and re-generable 3D graphene–organics aero-gel with high and stable photosensitization efficiency. J. Catal. 346, 21–29 (2017)

    Article  Google Scholar 

  14. D. Cao, Y. Wang, X. Zhao, Combination of photocatalytic and electrochemical degradation of organic pollutants from water. Curr. Opin. Green Sustain. Chem. 6, 78–84 (2017)

    Article  Google Scholar 

  15. S. Mortazavian, A. Saber, D.E. James, Optimization of photocatalytic degradation of Acid Blue 113 and Acid Red 88 textile dyes in a UV-C/TiO2 suspension system: application of response surface methodology (RSM). Catalysts 9(4), 360 (2019)

    Article  Google Scholar 

  16. M. Mishra, D.M. Chun, α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A 498, 126–141 (2015)

    Article  Google Scholar 

  17. T. Gao, Z. Chen, Y. Zhu, F. Niu, Q. Huang, L. Qin, Y. Huang, Synthesis of BiFeO3 nanoparticles for the visible-light induced photocatalytic property. Mater. Res. Bull. 59, 6–12 (2014)

    Article  Google Scholar 

  18. N.G. Yadav, L.S. Chaudhary, P.A. Sakhare, T.D. Dongale, P.S. Patil, A.D. Sheikh, Impact of collected sunlight on ZnFe2O4 nanoparticles for photocatalytic application. J. Colloid Interface Sci. 527, 289–297 (2018)

    Article  ADS  Google Scholar 

  19. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J. Photochem. Photobiol. B Biol. 190, 8–20 (2019)

    Article  Google Scholar 

  20. Z. Bai, Y. Zheng, W. Han, Y. Ji, T. Yan, Y. Tang, Z. Zhang, Development of a trapezoidal MgO catalyst for highly-efficient transesterification of glycerol and dimethyl carbonate. CrystEngComm 20(29), 4090–4098 (2018)

    Article  Google Scholar 

  21. M.Y. Guo, A.M.C. Ng, F. Liu, A.B. Djurišić, W.K. Chan, Photocatalytic activity of metal oxides—The role of holes and OH radicals. Appl. Catal. B 107(1–2), 150–157 (2011)

    Article  Google Scholar 

  22. R. Sathyamoorthy, K. Mageshwari, S.S. Mali, S. Priyadharshini, P.S. Patil, Effect of organic capping agent on the photocatalytic activity of MgO nanoflakes obtained by thermal decomposition route. Ceram. Int. 39(1), 323–330 (2013)

    Article  Google Scholar 

  23. A.B. Gh, M. Sabbaghan, Z. Mirgani, A comparative study on properties of synthesized MgO with different templates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 1286–1291 (2015)

    Article  ADS  Google Scholar 

  24. Y. Zheng, L. Cao, G. Xing, Z. Bai, J. Huang, Z. Zhang, Microscale flower-like magnesium oxide for highly efficient photocatalytic degradation of organic dyes in aqueous solution. RSC Adv. 9(13), 7338–7348 (2019)

    Article  ADS  Google Scholar 

  25. N. Salehifar, Z. Zarghami, M. Ramezani, A facile, novel and low-temperature synthesis of MgO nanorods via thermal decomposition using new starting reagent and its photocatalytic activity evaluation. Mater. Lett. 167, 226–229 (2016)

    Article  Google Scholar 

  26. S.E.L.İM. Demirci, B. Öztürk, S. Yildirim, F. Bakal, M. Erol, O. Sancakoğlu, R. Yigit, E. Celik, T. Batar, Synthesis and comparison of the photocatalytic activities of flame spray pyrolysis and sol–gel derived magnesium oxide nano-scale particles. Mater. Sci. Semiconductor Process. 34, 154–161 (2015)

    Article  Google Scholar 

  27. M.P.G. Mantilaka, R.T. De Silva, S.P. Ratnayake, G. Amaratunga, K.N. de Silva, Photocatalytic activity of electrospun MgO nanofibres: synthesis, characterization and applications. Mater. Res. Bull. 99, 204–210 (2018)

    Article  Google Scholar 

  28. K. Mageshwari, S.S. Mali, R. Sathyamoorthy, P.S. Patil, Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder Technol. 249, 456–462 (2013)

    Article  Google Scholar 

  29. G. Balakrishnan, R. Velavan, K. Mujasam Batoo, E.H. Raslan, Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys. 16, 103013 (2020)

    Article  Google Scholar 

  30. J. Zhang, X. Wang, W. Zheng, X. Kong, Y. Sun, X. Wang, Structure and luminescence properties of TiO2:Er3+ nano-crystals annealed at different temperatures. Mater. Lett. 61, 1658–1661 (2006)

    Article  Google Scholar 

  31. M. Pudukudy, Z. Yaakob, R. Rajendran, Visible light active novel WO3 nano-spheres for methylene blue degradation. Der Pharma Chemica 5, 208–212 (2013)

    Google Scholar 

  32. J. Zhao, G. Zhu, W. Huang, Z. He, X. Feng, Y. Ma, X. Dong, Q. Fan, L. Wang, Z. Hu, Y. Lü, W. Huang, Synthesis of large-scale undoped and nitrogen-doped amorphous graphene on MgO substrate by chemical vapor deposition. J. Mater. Chem. 22(37), 19679–19683 (2012)

    Article  Google Scholar 

  33. N. Sutradhar, A. Sinhamahapatra, S.K. Pahari, P. Pal, H.C. Bajaj, I. Mukhopadhyay, A.B. Panda, Controlled synthesis of different morphologies of MgO and their use as solid base catalysts. J. Phys. Chem. C 115(25), 12308–12316 (2011)

    Article  Google Scholar 

  34. G. Kordas, Sol–gel preparation of MgO fibers. J. Mater. Chem. 10(5), 1157–1160 (2000)

    Article  Google Scholar 

  35. Z. Zhang, Y. Zheng, J. Chen, Q. Zhang, Y. Ni, X. Liang, Facile synthesis of monodisperse magnesium oxide microspheres via seed-induced precipitation and their applications in high-performance liquid chromatography. Adv. Func. Mater. 17(14), 2447–2454 (2007)

    Article  Google Scholar 

  36. Z. Zhang, Y. Zheng, Y. Ni, Z. Liu, J. Chen, X. Liang, Temperature-and pH-dependent morphology and FT− IR analysis of magnesium carbonate hydrates. J. Phys. Chem. B 110(26), 12969–12973 (2006)

    Article  Google Scholar 

  37. Z. Zhang, Y. Zheng, J. Zhang, Q. Zhang, J. Chen, Z. Liu, X. Liang, Synthesis and shape evolution of monodisperse basic magnesium carbonate microspheres. Cryst. Growth Des. 7(2), 337–342 (2007)

    Article  Google Scholar 

  38. X. Zhang, Y. Zheng, H. Yang, Q. Wang, Z. Zhang, Controlled synthesis of mesocrystal magnesium oxide parallelogram and its catalytic performance. CrystEngComm 17(13), 2642–2650 (2015)

    Article  Google Scholar 

  39. Y. Zheng, X. Zhang, X. Wang, Q. Wang, Z. Bai, Z. Zhang, Morphological and surface structural evolutions of MgO particles from parallelograms to rods. CrystEngComm 18(15), 2612–2616 (2016)

    Article  Google Scholar 

  40. M.R.M. Shafiee, M. Kargar, M. Ghashang, Characterization and low-cost, green synthesis of Zn2+ doped MgO nanoparticles. Green Process. Synth. 7(3), 248–254 (2018)

    Article  Google Scholar 

  41. B.V. Prasad, B.R. Babu, M.S.R. Prasad, Structural and dielectric studies of Mg2+ substituted Ni–Zn ferrite. Mater. Sci.-Pol. 33(4), 806–815 (2015)

    Article  ADS  Google Scholar 

  42. R. Jain, V. Luthra, S. Gokhale, Probing influence of rare earth ions (Er3+, Dy3+ and Gd3+) on structural, magnetic and optical properties of magnetite nanoparticles. J. Magn. Magn. Mater. 456, 179–185 (2018)

    Article  ADS  Google Scholar 

  43. M. Fu, Y. Li, P. Lu, J. Liu, F. Dong, Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci. 258(4), 1587–1591 (2011)

    Article  ADS  Google Scholar 

  44. P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, N.J.A.S.S. Ndiege, Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method. Appl. Surf. Sci. 258(20), 8192–8198 (2012)

    Article  ADS  Google Scholar 

  45. W.J. Qin, J. Sun, J. Yang, X.W. Du, Control of Cu-doping and optical properties of ZnO quantum dots by laser ablation of composite targets. Mater. Chem. Phys. 130(1–2), 425–430 (2011)

    Article  Google Scholar 

  46. C. Jin, H. Kim, S. An, C. Lee, Photoluminescence properties of Sn-embedded MgO nanorods with different morphologies synthesized by a single thermal evaporation process. Chem. Eng. J. 198–199, 420–425 (2012)

    Article  Google Scholar 

  47. H.W. Kim, S.H. Shim, Growth of MgO nanowires assisted by the annealing treatment of Au-coated substrates. Chem. Phys. Lett. 422, 165–169 (2006)

    Article  ADS  Google Scholar 

  48. H.W. Kim, S.H. Shim, J.W. Lee, M.A. Kebede, H.-H. Yang, M.H. Kong, S.M. Choi, J.H. Yang, H.J. Bang, H.Y. Kim, Coating of MgO nanorods with protective layers: sputtering with a Si target, structure, and photoluminescence properties. Surf. Coat. Technol. 202, 2503–2508 (2008)

    Article  Google Scholar 

  49. C.M. Janet, B. Viswanathan, R.P. Viswanath, T.K. Varadarajan, Characterization and photoluminescence properties of MgO microtubes synthesized from hydromagnesite flowers. J. Phys. Chem. C 111(28), 10267–10272 (2007)

    Article  Google Scholar 

  50. A.V.S. Anandan, K.L.P. Sheeja Lovely, N. Gokulakrishnan, P. Srinivasu, T. Mori, V. Murugesan, V. Sivamurugan, K. Ariga, Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J. Mol. Catal. A: Chem. 266, 149–157 (2007)

    Article  Google Scholar 

  51. C.J.H. Kleinwechter, J. Knipping, H. Wiggers, P. Roth, Formation and properties of ZnO nano-particles from gas phase synthesis processes. J. Mater. Sci. 37, 4349–4360 (2002)

    Article  ADS  Google Scholar 

  52. J. Jeevanandam, Y.S. Chan, M.K. Danquah, Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J. Chem. 41, 2800–2814 (2017)

    Article  Google Scholar 

  53. M. Karthik, M. Parthibavarman, A. Kumaresan, S. Prabhakaran, V. Hariharan, R. Poonguzhali, S. Sathishkumar, One-step microwave synthesis of pure and Mn doped WO 3 nanoparticles and its structural, optical and electrochemical properties. J. Mater. Sci.: Mater. Electron. 28(9), 6635–6642 (2017)

    Google Scholar 

  54. S. Liew et al., Yb-doped WO3 photocatalysts for water oxidation with visible light. Int. J. Hydrog. Energy 39(9), 4291–4298 (2014)

    Article  Google Scholar 

  55. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  56. S.F. Bdewi, A.M. Abdulrazaka, B.K. Aziz, Catalytic Photodegradation of Methyl orange using MgO nanoparticles prepared by molten salt method. Asian Trans Eng 5, 1–5 (2015)

    Google Scholar 

  57. Farooq, M., & Ramli, A. (2011, September). The determination of point zero charge (PZC) of Al2O3-MgO mixed oxides. In 2011 National Postgraduate Conference (pp. 1–5). IEEE.

  58. Khan, A., Naeem, A., Mahmood, T., Ahmad, B., Ahmad, Z., Farooq, M., & Saeed, T. (2021). Mechanistic study on methyl orange and congo red adsorption onto polyvinyl pyrrolidone modified magnesium oxide. Int. J. Environ. Sci. Technol. 1–14

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Neyvasagam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijaya shanthi, R., Kayalvizhi, R., John Abel, M. et al. MgO nanoparticles with altered structural and optical properties by doping (Er3+) rare earth element for improved photocatalytic activity. Appl. Phys. A 128, 133 (2022). https://doi.org/10.1007/s00339-021-05141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05141-0

Keywords

Navigation