Skip to main content
Log in

Anisotropic electrical conduction on ion induced nanorippled CoSi surface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate electrical conduction on ion-induced nanorippled Co\(_{0.69}\)Si\(_{0.31}\) surfaces. Oblique Ar\(^+\) ion bombardment performed by varying the ion fluence within \(1.12\times 10^{18}-6.73\times 10^{18}\) ions cm\(^{-2}\) showed well-ordered ripples aligned perpendicular to the ion beam direction. At higher fluence, hillock like structures evolve due to shadowing effect. Electrical measurements on the pristine and patterned surfaces show strong dependency on the patterning of the surface. Channel resistance is found to be highly dependent on ripple amplitude, and therefore, an anisotropy in electrical response along two orthogonal directions of the sample surface is evident due to the difference in effective channel length as a consequence of ripple formation. The surface resistance is found to be dependent on the ripple amplitude of the patterned surface. The present ion irradiation based post processing of the grown films present a unique approach towards a systematic improvement in electrical conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.L. Chan, E. Chason, Making waves: kinetic processes controlling surface evolution during low energy ion sputtering. J. Appl. Phys. 101, 121301 (2007)

    Article  ADS  Google Scholar 

  2. J.M. Garcia, L. Vazquez, M. Casrto, R. Gago, A.R. Cubero, A.M. Barrado, R. Cuerno, Self-organized nanopatterning of silicon surfaces by ion beam sputtering. Mater. Sci. Eng. R 86, 1–44 (2014)

    Article  Google Scholar 

  3. T. Kumar, U. Singh, M. Kumar, S. Ojha, D. Kanjilal, Tuning of ripple patterns and wetting dynamics of Si (100) surface using ion beam irradiation. Curr. Appl. Phys. 14(3), 312 (2014)

    Article  ADS  Google Scholar 

  4. X. Ou, A. Keller, M. Helm, J. Fassbender, S. Facsko, Reverse epitaxy of Ge: ordered and faceted surface patterns. Phys. Rev. Lett. 111, 016101 (2013)

    Article  ADS  Google Scholar 

  5. X. Ou, K.-H. Heinig, R. Hübner, J. Grenzer, X. Wang, M. Helm, J. Fassbender, S. Facsko, Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies. Nanoscale 7, 18928 (2015)

    Article  ADS  Google Scholar 

  6. D. Babonneau, E. Vandenhecke, S. Camelio, Formation of nanoripples on amorphous alumina thin films during low-energy ion-beam sputtering: experiments and simulations. Phys. Rev. B 95, 085412 (2017)

    Article  ADS  Google Scholar 

  7. U. Valbusa, C. Boragno, F.B. de Mongeot, Nanostructuring surfaces by ion sputtering. J. Phys. Condens. Mat. 14(35), 8153 (2002)

    Article  ADS  Google Scholar 

  8. O. El-Atwani, S.A. Norris, K. Ludwig, S. Gonderman, J.P. Allain, Ion beam nanopatterning of III-V semiconductors: consistency of experimental and simulation trends within a chemistry-driven theory. Sci. Rep. 5, 18207 (2015)

    Article  ADS  Google Scholar 

  9. R. Gago, L. Vázquez, R. Cuerno, M. Varela, C. Ballesteros, J.M. Albella, Production of ordered silicon nanocrystals by low-energy ion sputtering. Appl. Phys. Lett. 78(21), 3316 (2001)

    Article  ADS  Google Scholar 

  10. B. Teshome, S. Facsko, A. Keller, Topography-controlled alignment of dna origami nanotubes on nanopatterned surfaces. Nanoscale 6, 1790 (2014)

    Article  ADS  Google Scholar 

  11. M. Buljan, S. Facsko, I.D. Marion, V.M. Trontl, M. Kralj, M. Jerčinovič, C. Baehtz, A. Muecklich, V.H.N. Radić, J. Grenzer, Self-assembly of Ge quantum dots on periodically corrugated Si surfaces. Appl. Phys. Lett. 107(20), 203101 (2015)

    Article  ADS  Google Scholar 

  12. D.K. Ball, S. Günther, M. Fritzsche, K. Lenz, G. Varvaro, S. Laureti, D. Makarov, A. Mücklich, S. Facsko, M. Albrecht, J. Fassbender, Out-of-plane magnetized cone-shaped magnetic nanoshells. J. Phys. D Appl. Phys. 50(11), 115004 (2017)

    Article  ADS  Google Scholar 

  13. M. Körner, K. Lenz, R.A. Gallardo, M. Fritzsche, A. Mücklich, S. Facsko, J. Lindner, P. Landeros, J. Fassbender, Two-magnon scattering in permalloy thin films due to rippled substrates. Phys. Rev. B 88, 054405 (2013)

    Article  ADS  Google Scholar 

  14. S. Camelio, E. Vandenhecke, S. Rousselet, D. Babonneau, Optimization of growth and ordering of agnanoparticle arrays on ripple patterned alumina surfaces for strong plasmonic coupling. Nanotechnology 25(3), 035706 (2014)

    Article  ADS  Google Scholar 

  15. M. Buljan, J. Grenzer, V. Holý, N. Radić, T. Mišić-Radić, S. Levichev, S. Bernstorff, B. Pivac, I. Capan, Formation of antireflection Zn/ZnO core-shell nano-pyramidal arrays by O\(_2^+\) ion bombardment of Zn surfaces. Appl. Phys. Lett. 97(16), 163117 (2010)

    Article  ADS  Google Scholar 

  16. N. Benito, G. Recio-Sanchez, R. Escobar-Galindo, C. Palacio, Formation of antireflection Zn/ZnO core-shell nano-pyramidal arrays by O\(_2^+\) ion bombardment of Zn surfaces. Nanoscale 9, 14201 (2017)

    Article  Google Scholar 

  17. B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P.G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, F. Buatier de Mongeot, Re-radiation enhancement in polarized surface-enhanced resonant raman scattering of randomly oriented molecules on self-organized gold nanowires. ACS Nano 5(7), 5945 (2011)

  18. M. Arya, M. Bhatnagar, M. Ranjan, S. Mukherjee, R. Nath, A. Mitra, Simulated near-field mapping of ripple pattern supported metal nanoparticles arrays for sers optimization. J. Phys. D Appl. Phys. 50(45), 455603 (2017)

    Article  ADS  Google Scholar 

  19. S. Yazidi, A. Fafin, S. Rousselet, F. Pailloux, S. Camelio, D. Babonneau, Structure and far-field optical properties of self-organized bimetallic Au\(_x\)-Ag\(_{1-x}\) nanoparticles embedded in alumina thin films. Prog. Surf. Sci. 12(12), 1344 (2015)

    Google Scholar 

  20. L.-C. Chao, Y.-K. Li, W.-C. Chang, Growth of ZnO quantum dots on Si nano ripples. Mater. Lett. 65(11), 1615 (2011)

    Article  Google Scholar 

  21. P. Pedraz, S. Casado, V. Rodriguez, M.C. Giordano, F.B. de Mongeot, A. Ayuso-Sacido, E. Gnecco, Adhesion modification of neural stem cells induced by nanoscale ripple patterns. Nanotechnology 27(12), 125301 (2016)

    Article  ADS  Google Scholar 

  22. C. Masciullo, R. Dell’Anna, I. Tonazzini, R. Boettger, G. Pepponi, M. Cecchini, Hierarchical thermoplastic rippled nanostructures regulate schwann cell adhesion, morphology and spatial organization. Nanoscale 9, 14861–14874 (2017)

  23. M. Engler, F. Frost, S. Muller, S. Macko, M. Will, R. Feder, D. Spemann, R. Hubner, S. Facsko, T. Michely, Silicide induced ion beam patterning of Si(001). Nanotechnology 25(11), 115303 (2014)

    Article  ADS  Google Scholar 

  24. V.B. Shenoy, W.L. Chan, E. Chason, Compositionally modulated ripples induced by sputtering of alloy surfaces. Phys. Rev. Lett. 98, 256101 (2007)

    Article  ADS  Google Scholar 

  25. P.D. Shipman, R.M. Bradley, Theory of nanoscale pattern formation induced by normal-incidence ion bombardment of binary compounds. Phys. Rev. B 84, 085420 (2011)

    Article  ADS  Google Scholar 

  26. S.L. Roy, E. Barthel, N. Brun, A. Lelarge, E. Sondergard, Self-sustained etch masking: a general concept to initiate the formation of nanopatterns during ion erosion. J. Appl. Phys. 106(9), 094308 (2009)

    Article  ADS  Google Scholar 

  27. S. Le Roy, E. Søndergård, I.S. Nerbø, M. Kildemo, M. Plapp, Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking. Phys. Rev. B 81, 161401 (2010)

  28. R.M. Bradley, P.D. Shipman, Spontaneous pattern formation induced by ion bombardment of binary compounds. Phys. Rev. Lett. 105(14), 145501 (2010)

    Article  ADS  Google Scholar 

  29. S.A. Mollick, M. Kumar, R. Singh, B. Satpati, D. Ghose, T. Som, Gold-decorated highly ordered self-organized grating-like nanostructures on Ge surface: Kelvin probe force microscopy and conductive atomic force microscopy studies. Nanotechnology 27(43), 435302 (2016)

    Article  Google Scholar 

  30. L.J. Chen, Metal silicides: an integral part of microelectronics. JOM 57(9), 24 (2005)

    Article  Google Scholar 

  31. B.K. Parida, M. Ranjan, S. Sarkar, Morphological instabilities in argon ion sputtered CoSi binary mixtures. Curr. Appl. Phys. 18(9), 993–1000 (2018)

    Article  ADS  Google Scholar 

  32. B.K. Parida, M. Ranjan, S. Sarkar, Influence of obliquely incident primary ion species on patterning of CoSi binary mixtures: an experimental study. Phys. B 545, 34–39 (2018)

    Article  ADS  Google Scholar 

  33. B.K. Parida, S. Sarkar, Stoichiometric influences on ion beam nanopatterning of CoSi binary compound. Vacuum 175, 109246 (2020)

    Article  ADS  Google Scholar 

  34. L. Wang, Y. Zhong, J. Li, W. Cao, Q. Zhong, X. Wang, X. Li, Effect of residual gas on structural, electrical and mechanical properties of niobium films deposited by magnetron sputtering deposition. Mater. Res. Express 5(4), 046410 (2018)

    Article  ADS  Google Scholar 

  35. A. Toma, B.S. Batič, D. Chiappe, C. Boragno, U. Valbusa, M. Godec, M. Jenko, F. Buatier de Mongeot, Patterning polycrystalline thin films by defocused ion beam: the influence of initial morphology on the evolution of self-organized nanostructures. J. Appl. Phys. 104(10), 104313 (2008)

    Article  ADS  Google Scholar 

  36. G. Carter, The effects of surface ripples on sputtering erosion rates and secondary ion emission yields. J. Appl. Phys. 85, 455 (1999)

    Article  ADS  Google Scholar 

  37. S. Sarkar, B.V. Daele, W. Vandervorst, Impact of repetitive and random surface morphologies on the ripple formation on ion bombarded SiGe-surfaces. New J. Phys. 10, 083012 (2008)

    Article  ADS  Google Scholar 

  38. R. Gago, L. Vazquez, R. Cuerno, M. Varela, C. Ballesteros, J.M. Albella, Nanopatterning of silicon surfaces by low-energy ion-beam sputtering: dependence on the angle of ion incidence. Nanotechnology 13(3), 304 (2002)

    Article  ADS  Google Scholar 

  39. F.-C. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 578168 (2014)

    Google Scholar 

Download references

Acknowledgements

The work has been supported by Department of Science and Technology, India by the proposal grant no. SR/S2/CMP-112/2012. B. K. Parida and A. Kundu have equal contribution to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (docx 800 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, B.K., Kundu, A., Hazra, K.S. et al. Anisotropic electrical conduction on ion induced nanorippled CoSi surface. Appl. Phys. A 127, 972 (2021). https://doi.org/10.1007/s00339-021-05117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05117-0

Keywords

Navigation