Skip to main content
Log in

Enhanced mechanical properties of epoxy-based nanocomposites reinforced with functionalized carbon nanobuds

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Although carbon nanotubes (CNTs) have been employed in nanocomposites as the reinforcement phase to improve the tensile mechanical properties, the distinct differences in values comparing the longitudinal, transverse, and shear moduli of the produced nanomaterials are still a subject of interest to study. In this work, different forms of carbon nanobuds (CNBs) were first examined as an alternative reinforcement nanofiller. The tensile mechanical properties of DGEBA/DETA epoxy-based nanocomposites were then examined using molecular dynamics modeling, after selecting the most stable form of the CNB. Moreover, the influences of different factors such as various cross-linking degrees of the matrix, the volume fraction of the nanofillers, and surface modifications of the CNB on the stated mechanical properties were comprehensively studied. To explicitly compare the effects of replacing the reinforcement phase, all the simulations were performed for both CNT and CNB nanofillers under similar conditions with the mentioned factors. The cross-linking and curing procedures were performed by packing the resin and hardener molecules into a simulation cell and carrying a series of energy minimization and dynamic steps to provide an accurate and realistic simulation. The surface functionalization of the CNBs was implemented using the hydroxyl and silane groups. The results exhibit that utilizing functionalized CNBs combined with a 50% cross-linking degree of the epoxy matrix can significantly enhance the shear and transverse elastic stiffness of the epoxy nanocomposites in comparison with using CNTs as nanofillers. This interesting result was along with an acceptable improvement of the tensile longitudinal property of the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.J. Chruściel, E. Leśniak, Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Prog. Polym. Sci. 41, 67–121 (2015). https://doi.org/10.1016/j.progpolymsci.2014.08.001

    Article  Google Scholar 

  2. F. El-Tantawy, K. Kamada, H. Ohnabe, In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater. Lett. 56(1–2), 112–126 (2002). https://doi.org/10.1016/S0167-577X(02)00401-9

    Article  Google Scholar 

  3. B. Mortazavi, J. Bardon, S. Ahzi, A. Ghazavizadeh, Y. Rémond, D. Ruch, Atomistic-continuum modeling of the mechanical properties of silica/epoxy nanocomposite. J. Eng. Mater. Technol. (2012). https://doi.org/10.1115/1.4005419

    Article  Google Scholar 

  4. J. Lu, P. Askeland, L.T. Drzal, Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5), 1285–1296 (2008). https://doi.org/10.1016/j.polymer.2008.01.028

    Article  Google Scholar 

  5. A. Toldy, B. Szolnoki, G. Marosi, Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polym. Degrad. Stab. 96(3), 371–376 (2011). https://doi.org/10.1016/j.polymdegradstab.2010.03.021

    Article  Google Scholar 

  6. B.L. Denq, Y.S. Hu, L.W. Chen, W.Y. Chiu, T.R. Wu, The curing reaction and physical properties of DGEBA/DETA epoxy resin blended with propyl ester phosphazene. J. Appl. Polym. Sci. 74(1), 229–237 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1%3c229::AID-APP28%3e3.0.CO;2-C

    Article  Google Scholar 

  7. C. Guibe, J. Francillette, Time-temperature-transformation (TTT) cure diagrams: relationships between Tg, cure temperature, and time for DGEBA/DETA systems. J. Appl. Polym. Sci. 62(11), 1941–1951 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961212)62:11%3c1941::AID-APP19%3e3.0.CO;2-0

    Article  Google Scholar 

  8. A. Shokuhfar, B. Arab, The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J. Mol. Model. 19(9), 3719–3731 (2013). https://doi.org/10.1007/s00894-013-1906-9

    Article  Google Scholar 

  9. F. Aghadavoudi, H. Golestanian, Y. Tadi Beni, Investigating the effects of resin crosslinking ratio on mechanical properties of epoxy-based nanocomposites using molecular dynamics. Polym. Compos. 38, E433–E442 (2017). https://doi.org/10.1002/pc.24014

    Article  Google Scholar 

  10. H. Badjian, A. Setoodeh, Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating–a molecular dynamic study. Phys. B Condens. Matter 507, 156–163 (2017). https://doi.org/10.1016/j.physb.2016.12.006

    Article  ADS  Google Scholar 

  11. C. Li, T.-W. Chou, A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40(10), 2487–2499 (2003). https://doi.org/10.1016/S0020-7683(03)00056-8

    Article  MATH  Google Scholar 

  12. M.A. Jafari, A.A. Kordbacheh, S. Mahdian, N. Ghasemi, Electronic and transport properties of (6, 2) carbon and silicon nanotubes: a first-principles calculation. Phys. E Low-Dimens. Syst. Nanostruct. 117, 113855 (2020). https://doi.org/10.1016/j.physe.2019.113855

    Article  Google Scholar 

  13. S. Xiao, W. Hou, Studies of size effects on carbon nanotubes’ mechanical properties by using different potential functions. Fuller. Nanotub. Carbon Nanostruct. 14(1), 9–16 (2006). https://doi.org/10.1080/15363830500538425

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Janas, K.Z. Milowska, P.D. Bristowe, K.K. Koziol, Improving the electrical properties of carbon nanotubes with interhalogen compounds. Nanoscale 9(9), 3212–3221 (2017). https://doi.org/10.1039/C7NR00224F

    Article  Google Scholar 

  15. S. Doagou-Rad, J. Jensen, A. Islam, L. Mishnaevsky Jr., Multiscale molecular dynamics-FE modeling of polymeric nanocomposites reinforced with carbon nanotubes and graphene. Compos. Struct. 217, 27–36 (2019). https://doi.org/10.1016/j.compstruct.2019.03.017

    Article  Google Scholar 

  16. O. Nabinejad, D. Sujan, M.E. Rahman, W.Y.H. Liew, I.J. Davies, Hybrid composite using natural filler and multi-walled carbon nanotubes (MWCNTs). Appl. Compos. Mater. 25(6), 1323–1337 (2018). https://doi.org/10.1007/s10443-017-9667-8

    Article  ADS  Google Scholar 

  17. A. El Moumen, M. Tarfaoui, K. Lafdi, Computational homogenization of mechanical properties for laminate composites reinforced with thin film made of carbon nanotubes. Appl. Compos. Mater. 25(3), 569–588 (2018). https://doi.org/10.1007/s10443-017-9636-2

    Article  ADS  Google Scholar 

  18. J. Li, D.-Q. Zheng, W.-R. Zhong, Thermal properties of defective fullerene. Int. J. Mod. Phys. B 30(26), 1650194 (2016). https://doi.org/10.1142/S0217979216501940

    Article  ADS  Google Scholar 

  19. T. Miyazaki, S. Hino, Electronic and geometric structures of cluster encapsulated fullerenes, in Physics and chemistry of carbon-based materials. (Springer, 2019), pp. 121–147. https://doi.org/10.1007/978-981-13-3417-7_5

    Chapter  Google Scholar 

  20. S. Das, S. Halder, N.I. Khan, Mechanical properties of oxidized fullerene C60/epoxy nanocomposite. Mater. Today Proc. 18, 655–659 (2019). https://doi.org/10.1016/j.matpr.2019.06.461

    Article  Google Scholar 

  21. A. Kausar, Advances in polymer/fullerene nanocomposite: a review on essential features and applications. Polym. Plast. Technol. Eng. 56(6), 594–605 (2017). https://doi.org/10.1080/03602559.2016.1233278

    Article  Google Scholar 

  22. A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov, A.S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A novel hybrid carbon material. Nat. Nanotechnol. 2(3), 156 (2007). https://doi.org/10.1038/nnano.2007.37

    Article  ADS  Google Scholar 

  23. A.G. Nasibulin, A.S. Anisimov, P.V. Pikhitsa, H. Jiang, D.P. Brown, M. Choi, E.I. Kauppinen, Investigations of nanobud formation. Chem. Phys. Lett. 446(1–3), 109–114 (2007). https://doi.org/10.1016/j.cplett.2007.08.050

    Article  ADS  Google Scholar 

  24. X. Li, L. Liu, Y. Qin, W. Wu, Z.-X. Guo, L. Dai, D. Zhu, C60 modified single-walled carbon nanotubes. Chem. Phys. Lett. 377(1–2), 32–36 (2003). https://doi.org/10.1016/S0009-2614(03)01088-1

    Article  ADS  Google Scholar 

  25. A. Seif, E. Zahedi, T. Ahmadi, A DFT study of carbon nanobuds. Eur. Phys. J. B 82(2), 147–152 (2011). https://doi.org/10.1140/epjb/e2011-20139-5

    Article  ADS  Google Scholar 

  26. Y. Wen, X. Liu, X. Duan, R. Chen, B. Shan, First-principles study of the structural, energetic and electronic properties of C20-carbon nanobuds. Modell. Simul. Mater. Sci. Eng. 21(3), 035006 (2013). https://doi.org/10.1088/0965-0393/21/3/035006

    Article  ADS  Google Scholar 

  27. J. Raula, M. Makowska, J. Lahtinen, A. Sillanpää, N. Runeberg, J. Tarus, M. Heino, E.T. Seppälä, H. Jiang, E.I. Kauppinen, Selective covalent functionalization of carbon nanobuds. Chem. Mater. 22(15), 4347–4349 (2010). https://doi.org/10.1021/cm100716g

    Article  Google Scholar 

  28. W. Koh, J.I. Choi, S.G. Lee, W.R. Lee, S.S. Jang, First-principles study of Li adsorption in a carbon nanotube-fullerene hybrid system. Carbon 49(1), 286–293 (2011). https://doi.org/10.1016/j.carbon.2010.09.022

    Article  Google Scholar 

  29. X. Zhu, H. Su, Magnetism in hybrid carbon nanostructures: nanobuds. Phys. Rev. B 79(16), 165401 (2009). https://doi.org/10.1103/PhysRevB.79.165401

    Article  ADS  Google Scholar 

  30. A. Sharma, S. Kaur, H. Sharma, I. Mudahar, Electronic and magnetic properties of small fullerene carbon nanobuds: a DFT study. Mater. Res. Express 5(6), 065032 (2018). https://doi.org/10.1088/2053-1591/aacb18

    Article  ADS  Google Scholar 

  31. X. Yang, L. Wang, Y. Huang, A.C. To, B. Cao, Effects of nanobuds and heat welded nanobuds chains on mechanical behavior of carbon nanotubes. Comput. Mater. Sci. 109, 49–55 (2015). https://doi.org/10.1016/j.commatsci.2015.07.005

    Article  Google Scholar 

  32. M.G. Ahangari, M. Ganji, F. Montazar, Mechanical and electronic properties of carbon nanobuds: first-principles study. Solid State Commun. 203, 58–62 (2015). https://doi.org/10.1016/j.ssc.2014.11.019

    Article  ADS  Google Scholar 

  33. X. Yang, L. Wang, Y. Huang, Z. Han, A.C. To, Carbon nanotube–fullerene hybrid nanostructures by C 60 bombardment: formation and mechanical behavior. Phys. Chem. Chem. Phys. 16(39), 21615–21619 (2014). https://doi.org/10.1039/C4CP02620A

    Article  Google Scholar 

  34. V.V. Mokashi, D. Qian, Y. Liu, A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics. Compos. Sci. Technol. 67(3–4), 530–540 (2007). https://doi.org/10.1016/j.compscitech.2006.08.014

    Article  Google Scholar 

  35. S. Banerjee, T. Hemraj-Benny, S.S. Wong, Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 17(1), 17–29 (2005). https://doi.org/10.1002/adma.200401340

    Article  Google Scholar 

  36. S. Daniel, T.P. Rao, K.S. Rao, S.U. Rani, G. Naidu, H.-Y. Lee, T. Kawai, A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens. Actuators B Chem. 122(2), 672–682 (2007). https://doi.org/10.1016/j.snb.2006.06.014

    Article  Google Scholar 

  37. A.H. Mashhadzadeh, A. Fereidoon, M.G. Ahangari, Surface modification of carbon nanotubes using 3-aminopropyltriethoxysilane to improve mechanical properties of nanocomposite based polymer matrix: experimental and density functional theory study. Appl. Surf. Sci. 420, 167–179 (2017). https://doi.org/10.1016/j.apsusc.2017.05.148

    Article  ADS  Google Scholar 

  38. Q.-S. Yang, B.-Q. Li, X.-Q. He, Y.-W. Mai, Modeling the mechanical properties of functionalized carbon nanotubes and their composites: design at the atomic level. Adv. Condens. Matter Phys. (2014). https://doi.org/10.1155/2014/482056

    Article  Google Scholar 

  39. A. Hirsch, Functionalization of fullerenes and carbon nanotubes. Phys. Status Solidi (B) 243(13), 3209–3212 (2006). https://doi.org/10.1002/pssb.200669191

    Article  ADS  Google Scholar 

  40. S. Afreen, K. Muthoosamy, S. Manickam, U. Hashim, Functionalized fullerene (C60) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens. Bioelectron. 63, 354–364 (2015). https://doi.org/10.1016/j.bios.2014.07.044

    Article  Google Scholar 

  41. P. Havu, A. Sillanpää, N. Runeberg, J. Tarus, E. Seppälä, R.M. Nieminen, Effects of chemical functionalization on electronic transport in carbon nanobuds. Phys. Rev. B 85(11), 115446 (2012). https://doi.org/10.1103/PhysRevB.85.115446

    Article  ADS  Google Scholar 

  42. I.V. Anoshkin, A.G. Nasibulin, P.R. Mudimela, J. Raula, V. Ermolov, E.I. Kauppinen, Selective chemical functionalization of carbon nanobuds. Carbon 50(11), 4171–4174 (2012). https://doi.org/10.1016/j.carbon.2012.04.066

    Article  Google Scholar 

  43. S. Masoumi, B. Arab, H. Valipour, A study of thermo-mechanical properties of the cross-linked epoxy: an atomistic simulation. Polymer 70, 351–360 (2015). https://doi.org/10.1016/j.polymer.2015.06.038

    Article  Google Scholar 

  44. H. Farahmand, A. Setoodeh, A density functional approach to characterize anisotropic hyperelastic behavior of organic crystals: case study of nylon-6, 6. Comput. Mater. Sci. 124, 390–397 (2016). https://doi.org/10.1016/j.commatsci.2016.08.004

    Article  Google Scholar 

  45. A. Setoodeh, H. Farahmand, Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model. J. Phys. Condens. Matter 30(3), 035901 (2017). https://doi.org/10.1088/1361-648X/aa99f7

    Article  ADS  Google Scholar 

  46. A. Alian, S. Kundalwal, S. Meguid, Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015). https://doi.org/10.1016/j.polymer.2015.06.004

    Article  Google Scholar 

  47. T. Okabe, Y. Oya, K. Tanabe, G. Kikugawa, K. Yoshioka, Molecular dynamics simulation of crosslinked epoxy resins: curing and mechanical properties. Eur. Polym. J. 80, 78–88 (2016). https://doi.org/10.1016/j.eurpolymj.2016.04.019

    Article  Google Scholar 

  48. G.I. Giannopoulos, Linking MD and FEM to predict the mechanical behaviour of fullerene reinforced nylon-12. Compos. B Eng. 161, 455–463 (2019). https://doi.org/10.1016/j.compositesb.2018.12.110

    Article  Google Scholar 

  49. M. Salavati, A. Mojahedin, A.H.N. Shirazi, Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: a molecular dynamics investigation. Front. Struct. Civ. Eng. 14, 623–631 (2020). https://doi.org/10.1007/s11709-020-0616-5

    Article  Google Scholar 

  50. X. Yang, Y. Wan, X. Wang, Y. Fu, Z. Huang, Q. Xie, Molecular dynamics studies of the mechanical behaviors and thermal conductivity of the DGEBA/MTHPA/CNB composites. Compos. B Eng. 164, 659–666 (2019). https://doi.org/10.1016/j.compositesb.2019.01.069

    Article  Google Scholar 

  51. G.I. Giannopoulos, Introducing bone-shaped carbon nanotubes to reinforce polymer nanocomposites: a molecular dynamics investigation. Mater. Today Commun. 20, 100570 (2019). https://doi.org/10.1016/j.mtcomm.2019.100570

    Article  Google Scholar 

  52. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  MATH  Google Scholar 

  53. S. Zhang, S.L. Mielke, R. Khare, D. Troya, R.S. Ruoff, G.C. Schatz, T. Belytschko, Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations. Phys. Rev. B 71(11), 115403 (2005). https://doi.org/10.1103/PhysRevB.71.115403

    Article  ADS  Google Scholar 

  54. Q. Lu, W. Gao, R. Huang, Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Modell. Simul. Mater. Sci. Eng. 19(5), 054006 (2011). https://doi.org/10.1088/0965-0393/19/5/054006

    Article  ADS  Google Scholar 

  55. H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998). https://doi.org/10.1021/jp980939v

    Article  Google Scholar 

  56. P.P. Ewald, Die berechnung optischer und elektrostatischer gitterpotentiale. Ann. Phys. 369(3), 253–287 (1921). https://doi.org/10.1002/andp.19213690304

    Article  MATH  Google Scholar 

  57. I. Yarovsky, E. Evans, Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins. Polymer 43(3), 963–969 (2002). https://doi.org/10.1016/S0032-3861(01)00634-6

    Article  Google Scholar 

  58. T.C. Clancy, S. Frankland, J. Hinkley, T. Gates, Molecular modeling for calculation of mechanical properties of epoxies with moisture ingress. Polymer 50(12), 2736–2742 (2009). https://doi.org/10.1016/j.polymer.2009.04.021

    Article  Google Scholar 

  59. E.N. Brown, S.R. White, N.R. Sottos, Fatigue crack propagation in microcapsule-toughened epoxy. J. Mater. Sci. 41(19), 6266–6273 (2006). https://doi.org/10.1007/s10853-006-0512-y

    Article  ADS  Google Scholar 

  60. H.J. Berendsen, J.V. Postma, W.F. van Gunsteren, A. Dinola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984). https://doi.org/10.1063/1.448118

    Article  ADS  Google Scholar 

  61. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985). https://doi.org/10.1103/PhysRevA.31.1695

    Article  ADS  Google Scholar 

  62. G.J. Martyna, M.L. Klein, M. Tuckerman, Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97(4), 2635–2643 (1992). https://doi.org/10.1063/1.463940

    Article  ADS  Google Scholar 

  63. F.G. Garcia, B.G. Soares, V.J. Pita, R. Sánchez, J. Rieumont, Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. J. Appl. Polym. Sci. 106(3), 2047–2055 (2007). https://doi.org/10.1002/app.24895

    Article  Google Scholar 

  64. Y.C. Yuan, M.Z. Rong, M.Q. Zhang, J. Chen, G.C. Yang, X.M. Li, Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules 41(14), 5197–5202 (2008). https://doi.org/10.1021/ma800028d

    Article  ADS  Google Scholar 

  65. G. Possart, M. Presser, S. Passlack, P. Geiß, M. Kopnarski, A. Brodyanski, P. Steinmann, Micro–macro characterisation of DGEBA-based epoxies as a preliminary to polymer interphase modelling. Int. J. Adhes. Adhes. 29(5), 478–487 (2009). https://doi.org/10.1016/j.ijadhadh.2008.10.001

    Article  Google Scholar 

  66. S. Bao, S.C. Tjong, Mechanical behaviors of polypropylene/carbon nanotube nanocomposites: the effects of loading rate and temperature. Mater. Sci. Eng. A 485(1–2), 508–516 (2008). https://doi.org/10.1016/j.msea.2007.08.050

    Article  Google Scholar 

  67. L.-Y. Liu, Z.-X. Zhang, X.-F. Gou, H.-X. Yang, Molecular modelling of the effect of loading rate on elastic properties of CNT-polyethylene nanocomposite and its interface. Mater. Res. Express 6(12), 1250d2 (2020). https://doi.org/10.1088/2053-1591/ab61b2

    Article  Google Scholar 

  68. A. Alian, S. Kundalwal, S.J.C.S. Meguid, Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Compos. Struct. 131, 545–555 (2015). https://doi.org/10.1016/j.compstruct.2015.06.014

    Article  Google Scholar 

  69. A. Setoodeh, H. Badjian, Mechanical behavior enhancement of defective graphene sheet employing boron nitride coating via atomistic study. Mater. Res. Express 4(12), 125019 (2017). https://doi.org/10.1088/2053-1591/aa9ac2

    Article  ADS  Google Scholar 

  70. B. Kim, J. Choi, S. Yang, S. Yu, M.J.P. Cho, Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites. Polymer 60, 186–197 (2015). https://doi.org/10.1016/j.polymer.2015.01.043

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Setoodeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badjian, H., Setoodeh, A.R., Bavi, O. et al. Enhanced mechanical properties of epoxy-based nanocomposites reinforced with functionalized carbon nanobuds. Appl. Phys. A 127, 945 (2021). https://doi.org/10.1007/s00339-021-05095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05095-3

Keywords

Navigation