Skip to main content
Log in

Optical, structural, and morphological characterizations of synthesized (Cd–Ni) co-doped ZnO thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A well-prepared ZnO and (Cd–Ni) co-doped ZnO thin films are synthesized using the simple, inexpensive sol–gel method by immersing technique. The optical, structural, and morphological characterizations of (Cd–Ni) co-doped ZnO thin films are performed by employing UV–Vis spectrophotometry, X-ray diffraction (XRD), and the scanning electron microscope (SEM). The XRD patterns are consistent with those for standard hexagonal wurtzite structure. As the content of (Cd–Ni) co-dopant is increased from 0 to 8%, the transmittance spectra (\(T\%\)) of thin films is decreased from 89 to 53%. In contrast, the reflectance spectra (\(R\%\)) is increase from 7.8 to 18.2%. The values of the optical band gap \({E}_{g}\) are found between 3.09 and 3.28 eV depending on the (Cd–Ni) co-doping ratio. A combination of Wemple–DiDomenico, Sellmeier, Spitzer-Fan models as well Drude model are implemented to estimate different optical parameters such as dispersion energy (Ed), zero-frequency refractive index (n0), Zero-frequency dielectric constant (ε0), the optical moment, High-frequency dielectric (ε), the density of state (Nc/m*), Relaxation time (τ) as well the optical mobility (µopt) and resistivity (ρopt). Technological constraints in fabricating (Cd–Ni) co-doped ZnO thin films include the variation of their properties as a function of deposition conditions such as doping concentration, nature and temperature of the substrate, technique of deposition and the nature of the chemical precursor used to control, in principle, the phase deposited and its morphology. ZnO thin films doped by transition metals have a lot of applications in optoelectronic devices such as solar cells, flat panel displays, photodetectors, gas sensors, and spintronics. Our comprehensive study paves the way to fabricate scaled devices based on (Cd–Ni) co-doped ZnO thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.S. Kim, W.P. Tai, S.J. Shu, Effect of preheating temperature on structural and optical properties of ZnO thin films by sol–gel process. Thin Solid Films 491(1–2), 153–160 (2005)

    ADS  Google Scholar 

  2. L. Znaidi et al., ZnO thin films synthesized by sol-gel process for photonic applications. Acta Phys. Pol. Ser. A Gen. Phys. 121(1), 165 (2012)

    ADS  Google Scholar 

  3. H.-J. Michel et al., Adsorbates and their effects on gas sensing properties of sputtered SnO2 films. Appl. Surf. Sci. 126(1–2), 57–64 (1998)

    ADS  Google Scholar 

  4. V. Postica et al., Individual Bi 2 O 3-functionalized ZnO microwire for hydrogen gas detection, in Advanced nanotechnologies for detection and defence against CBRN agents. ed. by P. Petkov, D. Tsiulyanu, C. Popov, W. Kulisch (Springer, 2018), pp. 445–450

    Google Scholar 

  5. K. Belghit et al., Sprayed ZnO thin films as optical window in CuInSe 2 based solar cells. In: Tenth EC photovoltaic solar energy conference. (1991), Springer

  6. D.-G. Yoo et al., Fabrication of the ZnO thin films using wet-chemical etching processes on application for organic light emitting diode (OLED) devices. Surf. Coat. Technol. 202(22–23), 5476–5479 (2008)

    Google Scholar 

  7. Z. Yan et al., Impacts of preparation conditions on photoelectric properties of the ZnO: Ge transparent conductive thin films fabricated by pulsed laser deposition. J. Alloys Compd. 812, 152093 (2020)

    Google Scholar 

  8. C.M. Lampert, Heat mirror coatings for energy conserving windows. Solar Energy Mater. 6(1), 1–41 (1981)

    MathSciNet  Google Scholar 

  9. L.A. Goodman, Liquid-crystal displays—Electro-optic effects and addressing techniques. (1975), p. 241–279

  10. M.R. Sekhar et al., Visible light photoconductivity studies of gold nanoparticle embedded ZnO thin films for photo detector application. Semiconductor Sci. Technol. 35(11), 115004 (2020)

    ADS  Google Scholar 

  11. W. Vallejo, A. Cantillo, C. Díaz-Uribe, Methylene blue photodegradation under visible irradiation on Ag-doped ZnO thin films. Int. J. Photoenergy (2020). https://doi.org/10.1155/2020/1627498

    Article  Google Scholar 

  12. M. Purica et al., Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD). Thin Solid Films 403, 485–488 (2002)

    ADS  Google Scholar 

  13. Y.J. Kim, H.J. Kim, Trapped oxygen in the grain boundaries of ZnO polycrystalline thin films prepared by plasma-enhanced chemical vapor deposition. Mater. Lett. 41(4), 159–163 (1999)

    Google Scholar 

  14. J. Tsujino et al., Preparation of Al-doped ZnO thin films by RF thermal plasma evaporation. Thin Solid Films 407(1–2), 86–91 (2002)

    ADS  Google Scholar 

  15. A. Zaier et al., Annealing effects on the structural, electrical and optical properties of ZnO thin films prepared by thermal evaporation technique. J. King Saud Univ. Sci. 27(4), 356–360 (2015)

    Google Scholar 

  16. A. El Manouni et al., Effect of aluminium doping on zinc oxide thin films grown by spray pyrolysis. Superlattices Microstruct. 39(1–4), 185–192 (2006)

    ADS  Google Scholar 

  17. J.H. Lee, B.O. Park, Characteristics of Al-doped ZnO thin films obtained by ultrasonic spray pyrolysis: effects of Al doping and an annealing treatment. Mater. Sci. Eng. B 106(3), 242–245 (2004)

    Google Scholar 

  18. A. Rherari, M. Addou, M. Haris, Structural and optical characterization of (Sn/Li) co-doped ZnO thin films deposited by spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 28(21), 15762–15767 (2017)

    Google Scholar 

  19. X. Xiu et al., Transparent conducting molybdenum-doped zinc oxide films deposited by RF magnetron sputtering. Appl. Surf. Sci. 253(6), 3345–3348 (2007)

    ADS  Google Scholar 

  20. L. Ghimpu et al., Effect of Al Sn—Doping on properties of zinc oxide nanostructured films grown by magnetron sputtering. (2013)

  21. R. Ghosh, G. Paul, D. Basak, Effect of thermal annealing treatment on structural, electrical and optical properties of transparent sol–gel ZnO thin films. Mater. Res. Bull. 40(11), 1905–1914 (2005)

    Google Scholar 

  22. Z. Liu et al., Preparation of ZnO porous thin films by sol–gel method using PEG template. Mater. Lett. 59(28), 3620–3625 (2005)

    Google Scholar 

  23. B. Li et al., Synthesis and characterization of highly preferred orientation polycrystalline Co-doped ZnO thin films prepared by improved sol–gel method. J. Sol-Gel Sci. Technol. 70(1), 19–23 (2014)

    Google Scholar 

  24. V. Musat et al., Al-doped ZnO thin films by sol–gel method. Surf. Coat. Technol. 180, 659–662 (2004)

    Google Scholar 

  25. K.D.A. Kumar et al., Effect of Er doping on the ammonia sensing properties of ZnO thin films prepared by a nebulizer spray technique. J. Phys. Chem. Solids 144, 109513 (2020)

    Google Scholar 

  26. E. Nurfani et al., UV sensitivity enhancement in Fe-doped ZnO films grown by ultrafast spray pyrolysis. Opt. Mater. 112, 110768 (2021)

    Google Scholar 

  27. M.H. Bouslama et al., Chemical, morphological and optical properties of undoped and Cu-doped ZnO thin films submitted to UHV treatment. Appl. Surf. Sci. 520, 146302 (2020)

    Google Scholar 

  28. G. Voicu et al., Co doped ZnO thin films deposited by spin coating as antibacterial coating for metallic implants. Ceram. Int. 46(3), 3904–3911 (2020)

    Google Scholar 

  29. S. Benzitouni et al., The use of advanced atomic force microscopy for the quantitative nanomechanical characterization of Co-doped ZnO thin films. Chin. J. Phys. 55(6), 2458–2467 (2017)

    Google Scholar 

  30. H. Ahmoum et al., Structural, morphological and transport properties of Ni doped ZnO thin films deposited by thermal co-evaporation method. Mater. Sci. Semiconductor Process. 123, 105530 (2021)

    Google Scholar 

  31. A.G.S. Kumar et al., Structural, electrical and optical properties of Cd doped ZnO thin films by reactive dc magnetron sputtering. JOM 67(4), 834–839 (2015)

    Google Scholar 

  32. Q. Luo et al., Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering. Appl. Phys. A 108(1), 239–245 (2012)

    ADS  Google Scholar 

  33. B.A. Gozeh et al., Synthesis and characterization of La-DOPED ZnO (La: ZnO) films for photodetectors. Surf. Rev. Lett. 27(07), 1950173 (2020)

    ADS  Google Scholar 

  34. M. Subramanian et al., Intrinsic ferromagnetism and magnetic anisotropy in Gd-doped ZnO thin films synthesized by pulsed spray pyrolysis method. J. Appl. Phys. 108(5), 053904 (2010)

    ADS  Google Scholar 

  35. J. Lü et al., Preparation and characterization of Na-doped ZnO thin films by sol–gel method. Phys. B Condens. Matter 405(15), 3167–3171 (2010)

    ADS  Google Scholar 

  36. M. Hjiri et al., Study of defects in Li-doped ZnO thin films. Mater. Sci. Semiconductor Process. 89, 149–153 (2019)

    Google Scholar 

  37. P. Kumar et al., Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Appl. Surf. Sci. 514, 145930 (2020)

    Google Scholar 

  38. A. Alsaad et al., Structural, optoelectrical, linear, and nonlinear optical characterizations of dip-synthesized undoped ZnO and group III elements (B, Al, Ga, and In)-doped ZnO thin films. Curr. Comput.-Aided Drug Des. 10(4), 252 (2020)

    Google Scholar 

  39. D. Das, L. Karmakar, Optimization of Si doping in ZnO thin films and fabrication of n-ZnO: Si/p-Si heterojunction solar cells. J. Alloys Compd. 824, 153902 (2020)

    Google Scholar 

  40. J. Jacob et al., Improved thermoelectric performance of Al and Sn doped ZnO nano particles by the engineering of secondary phases. Ceram. Int. 46(10), 15013–15017 (2020)

    Google Scholar 

  41. Z. Lu et al., Structural characterization and optoelectrical properties of Ti–Ga co-doped ZnO thin films prepared by magnetron sputtering. J. Mater. Sci. Mater. Electron. 27(3), 2875–2884 (2016)

    ADS  Google Scholar 

  42. A. Ahmad et al., Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Appl. Phys. A 124(6), 458 (2018)

    ADS  Google Scholar 

  43. Q.M. Al-Bataineh et al., Structural, electronic and optical characterization of ZnO thin film-seeded platforms for ZnO nanostructures: sol–gel method versus ab initio calculations. J. Electron. Mater. 48(8), 5028–5038 (2019)

    ADS  Google Scholar 

  44. A. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)

    ADS  Google Scholar 

  45. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, vol. 3 (Prentice hall New Jersey, 2001)

    Google Scholar 

  46. T. Munawar et al., Multi metal oxide NiO-CdO-ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram. Int. 46(2), 2421–2437 (2020)

    MathSciNet  Google Scholar 

  47. T. Munawar et al., Novel tri-phase heterostructured ZnO–Yb2O3–Pr2O3 nanocomposite; structural, optical, photocatalytic and antibacterial studies. Ceram. Int. 46(8), 11101–11114 (2020)

    Google Scholar 

  48. A. Ahmad et al., Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Appl. Phys. A 124(6), 1–13 (2018)

    ADS  Google Scholar 

  49. M. Sathya, K. Pushpanathan, Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 449, 346–357 (2018)

    ADS  Google Scholar 

  50. T. Munawar et al., Zn0. 9Ce0. 05M0. 05O (M= Er, Y, V) nanocrystals: structural and energy bandgap engineering of ZnO for enhancing photocatalytic and antibacterial activity. Ceram. Int. 46(10), 14369–14383 (2020)

    Google Scholar 

  51. L.B. Chandrasekar et al., Synthesis and characterization of microwave irradiated Sr doped ZnO nanostructure. J. Optoelectron. Adv. Mater. 21, 146–150 (2019)

    Google Scholar 

  52. L.B. Chandrasekar et al., Structural, optical and electrical properties of undoped and doped ZnO thin films. 2D Materials, (2019)

  53. A.M. Alsaad et al., Optical, structural, and crystal defects characterizations of dip synthesized (Fe-Ni) co-doped ZnO thin films. Materials 13(7), 1737 (2020)

    ADS  Google Scholar 

  54. Q.M. Al-Bataineh et al., Synthesis, crystallography, microstructure, crystal defects optical and optoelectronic properties of ZnO CeO2 mixed oxide thin films. Photonics (2020). https://doi.org/10.3390/photonics7040112

    Article  Google Scholar 

  55. A. Alsaad et al., Measurement and ab initio investigation of structural, electronic, optical, and mechanical properties of sputtered aluminum nitride thin films. Front. Phys. 8, 115 (2020)

    Google Scholar 

  56. M. Aliofkhazraei, A.S.H. Makhlouf, Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques (Springer, 2016)

    Google Scholar 

  57. P.M. Kibasomba et al., Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method. Results Phys. 9, 628–635 (2018)

    ADS  Google Scholar 

  58. K. Venkateswarlu, A.C. Bose, N. Rameshbabu, X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Phys. B Condens. Matter 405(20), 4256–4261 (2010)

    ADS  Google Scholar 

  59. S.-K. Wang et al., Effects of post-annealing on the structural and nanomechanical properties of Ga-doped ZnO thin films deposited on glass substrate by rf-magnetron sputtering. Appl. Surf. Sci. 258(3), 1261–1266 (2011)

    ADS  Google Scholar 

  60. N.S. Kumar, K.V. Bangera, G. Shivakumar, Effect of annealing on the properties of Bi doped ZnO thin films grown by spray pyrolysis technique. Superlattices Microstruct. 75, 303–310 (2014)

    ADS  Google Scholar 

  61. R. Yogamalar et al., X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 149(43–44), 1919–1923 (2009)

    ADS  Google Scholar 

  62. R. Vinodkumar et al., Highly conductive and transparent laser ablated nanostructured Al: ZnO thin films. Appl. Surf. Sci. 257(3), 708–716 (2010)

    MathSciNet  ADS  Google Scholar 

  63. T.P. Rao et al., Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis. Phys. B Condens. Matter. 405(9), 2226–2231 (2010)

    ADS  Google Scholar 

  64. S. Horiuchi et al., Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463(7282), 789 (2010)

    ADS  Google Scholar 

  65. A.A. Akl, A. Hassanien, Microstructure and crystal imperfections of nanosized CdSxSe1− x thermally evaporated thin films. Superlattices Microstruct. 85, 67–81 (2015)

    ADS  Google Scholar 

  66. G. Williamson, R. Smallman III., Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Phil. Mag. 1(1), 34–46 (1956)

    ADS  Google Scholar 

  67. M. Fitzpatrick et al (2005) Determination of residual stresses by X-ray diffraction

  68. S. Adachi, Handbook on Physical Properties of Semiconductors, vol. 2 (Springer Science & Business Media, 2004)

    Google Scholar 

  69. C. Solliard, M. Flueli, Surface stress and size effect on the lattice parameter in small particles of gold and platinum. Surf. Sci. 156, 487–494 (1985)

    ADS  Google Scholar 

  70. A.K. Srivastav, N. Chawake, B. Murty, Grain-size-dependent non-monotonic lattice parameter variation in nanocrystalline W: the role of non-equilibrium grain boundary structure. Scripta Mater. 98, 20–23 (2015)

    Google Scholar 

  71. Y. Natsume, H. Sakata, Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films 372(1–2), 30–36 (2000)

    ADS  Google Scholar 

  72. Y. Liu et al., Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates. Physica B 322(1–2), 31–36 (2002)

    ADS  Google Scholar 

  73. Q.M. Al-Bataineh et al., A novel optical model of the experimental transmission spectra of nanocomposite PVC-PS hybrid thin films doped with silica nanoparticles. Heliyon 6(6), e04177 (2020)

    Google Scholar 

  74. J. Tauc, Amorphous and Liquid Semiconductors (Springer Science & Business Media, 2012)

    Google Scholar 

  75. K. Joshi et al., Band gap widening and narrowing in Cu-doped ZnO thin films. J. Alloys Compd. 680, 252–258 (2016)

    Google Scholar 

  76. S. Aksoy et al., Effect of Sn dopants on the optical and electrical properties of ZnO films. Opt. Appl. 40(1), 7–14 (2010)

    Google Scholar 

  77. J.F. Chang, M.H. Hon, The effect of deposition temperature on the properties of Al-doped zinc oxide thin films. Thin Solid Films 386(1), 79–86 (2001)

    ADS  Google Scholar 

  78. H. Chen et al., The effect microstructure on the gas properties of Ag doped zinc oxide sensors: spheres and sea-urchin-like nanostructures. J. Alloys Compd. 687, 342–351 (2016)

    Google Scholar 

  79. L. Linzhi, G. Shujuan, Polyaniline (PANI) and BaTiO3 composite nanotube with high suspension performance in electrorheological fluid. Mater. Today Commun. 24, 100993 (2020)

    Google Scholar 

  80. H.J. Kim et al., Fabrication of nanocomposites complexed with gold nanoparticles on polyaniline and application to their nerve regeneration. ACS Appl. Mater. Interfaces. 12(27), 30750–30760 (2020)

    Google Scholar 

  81. H.S. Shaaker, W.A. Hussain, H.A. Badran, Determination of the optical constants and optical limiting of doped malachite green thin films by the spray method. Adv. Appl. Sci. Res. 3(5), 2940–2946 (2012)

    Google Scholar 

  82. S.H. Wemple, M. DiDomenico Jr., Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338 (1971)

    ADS  Google Scholar 

  83. Y. Gupta and P. Arun, Refractive index of p-SnS thin films and its dependence on defects (2016)

  84. W. Yang et al., Structure and refractive index dispersive behavior of potassium niobate tantalate films prepared by pulsed laser deposition. Appl. Surf. Sci. 257(16), 7221–7225 (2011)

    ADS  Google Scholar 

  85. A.S. Hassanien, A.A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50− xSex thin films. J. Alloys Compd. 648, 280–290 (2015)

    Google Scholar 

  86. H.A. Badran et al., Determination of optical constants and nonlinear optical coefficients of Violet 1-doped polyvinyl alcohol thin film. Pramana 86(1), 135–145 (2016)

    ADS  Google Scholar 

  87. W. Spitzer, H.J.P.R. Fan, Determination of optical constants and carrier effective mass of semiconductors. Phys. Rev. 106(5), 882 (1957)

    ADS  Google Scholar 

  88. A.Y. Fasasi et al., Effect of precursor solvents on the optical properties of copper oxide thin films deposited using spray pyrolysis for optoelectronic applications. Am. J. Mater. Synth. Process 3, 12 (2018)

    Google Scholar 

  89. Q.M.A.-B. Mr, T.O.S. Mr, and K.A.A.-i.J.P.B.C.M. Miss, Optical properties of hydrophobic ZnO nano-structure based on antireflective coatings of ZnO/TiO2/SiO2 thin films 593, p. 412263 (2020)

  90. D. Gültekin, H. Akbulut, Raman studies of ZnO products synthesized by solution based methods. Acta Phys. Pol. A 129, 803–805 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the deanship of scientific research at Jordan University of Science and Technology for financial, technical and logistic support.

Special acknowledgments are forwarded to Borhan A. Albiss and Mohammad A. Al-Omari at the department of Physics, Jordan University of Science and Technology for the access provided for their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Alsaad.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A.A., Migdadi, A.B., Alsaad, A.M. et al. Optical, structural, and morphological characterizations of synthesized (Cd–Ni) co-doped ZnO thin films. Appl. Phys. A 127, 922 (2021). https://doi.org/10.1007/s00339-021-05090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05090-8

Keywords

Navigation