Abstract
In this article, CuO nanoparticles have been synthesized successfully using the facile hydrothermal approach with various reaction temperatures (60–220 °C). The structural, optical, compositional, and morphology are studied using various analytical techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), diffuse reflectance spectroscopy (DRS), energy-dispersive X-ray analysis (EDAX), laser Raman spectroscopy, and photoluminescence (PL) spectroscopy. The X-ray diffraction pattern revealed pure CuO with monoclinic structure, and the laser Raman study supports XRD results. The FTIR analysis confirmed a pure CuO phase, and elemental studies confirm the CuO stoichiometry. The optical band gap was estimated in between 1.46 and 1.53 eV, and the band gap values are varied due to grain size. The FESEM images reveal those different morphologies such as a mixture of rods with needles, feathers, and a sheaf of rods with different temperatures with the function of temperatures. The change in PL intensity and peak shift was found, and the low recombination of charger carrier was obtained for 180 °C nanoparticles. The photocatalytic degradation efficiency was found to be 67–92% with different temperatures, and the highest degradation was 92% for 180 °C NPs.
This is a preview of subscription content, access via your institution.














References
P. Vinothkumar, C. Manoharan, B. Shanmugapriya et al., Effect of reaction time on structural, morphological, optical and photocatalytic properties of copper oxide (CuO) nanostructures. J. Mater. Sci.: Mater. Electron 30, 6249–6262 (2019)
C. Yang, F. Xiao, J. Wang, X. Su, 3D flower and 2D sheet-like CuO nanostructures: microwave-assisted synthesis and application in gas sensors. Sens. Actuators, B Chem. 207, 177–185 (2015)
C. Tamuly, M. Hazarika, J. Das, M. Bordoloi, D.J. Borah, M.R. Das, Bio-derived CuO nanoparticles for the photocatalytic treatment of dyes. Mater. Lett. 123, 202–205 (2014)
S. Singh, N. Kumar, M.K. Jyoti, A. Agarwal, B. Mizaikoff, Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chem. Eng. J. 313, 283–292 (2017)
S. Masudy-Panah, M. Kakran, Y.F. Lim, C.S. Chua, H. Tan, G.K. Dalapatia, Graphene nanoparticle incorporated CuO thin film for solar cell application. J. Renew. Sustain. Energy Rev. 8, 043507–043507 (2016)
M.E. Grigore, E.R. Biscu, A.M. Holban, M.C. Gestal, A.M. Grumezescu, Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 9, 75 (2016)
A. Jabbar, I. Qasim, M. Mumtaz, K. Nadeem, Synthesis and superconductivity of (Ag)x/CuTl-1223 composites. Prog. Nat. Sci: Mater. Int. 25, 204–208 (2015)
Z. Wang, F. Su, S. Madhavi, X.W. Lou, CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale 3, 1618–1623 (2011)
N.M. Shaalan, M. Rashad, M.A. Abdel-Rahim, CuO nanoparticles synthesized by microwave-assisted method for methane sensing. Opt. Quant. Electron. 48, 1–11 (2016)
J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, P.X. Yan, CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268–273 (2008)
M. Outokesh, M. Hosseinpour, S.J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Hydrothermal synthesis of CuO nanoparticles: study on effects of operational conditions on yield, purity, and size of the nanoparticles. Ind. Eng. Chem. Res. 50(6), 3540–3554 (2011)
X. Ma, S. Zeng, B. Zou, X. Liang, J. Liao, C. Chen, Synthesis of different CuO nanostructures by a new catalytic template method as anode materials for lithium-ion batteries. RSC Adv. 5, 57300–57308 (2015)
N. Malviya, G. Carpenter, N. Oswal, N. Gupta, Synthesis and characterization of CuO nano particles using precipitation method. AIP Conf. Proc. 1665, 050038–050043 (2015)
H.R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, H. Nagabhushana, Green synthesis of CuO nanoparticles using Gloriosasuperba L. extract and their antibacterial activity. J. Taibah University Sci. 9, 7–12 (2015)
M. Behera, G. Giri, Inquiring the photocatalytic activity of cuprous oxide nanoparticles synthesized by a green route on methylene blue dye. Inter. J. Ind. Chem. 7, 157–166 (2016)
X. Li, W. Guo, H. Huang, T. Chen, M. Zhang, Y. Wang, Synthesis and photocatalytic properties of CuO nanostructures. J. Nanosci. Nanotechnol. 14, 3428–3432 (2014)
A. Aslani, Controlling the morphology and size of CuO nanostructures with synthesis by solvo/hydrothermal method without any additives. Physica. B Condens. Mater. 406, 150–154 (2011)
T. Zhou, Z. Zang, J. Wei, J. Zheng, J. Hao, F. Ling, X. Tang, L. Fang, M. Zhou, Efficient charge carrier separation and excellent visible light photoresponse in Cu2O nanowires. Nano Energy 50, 118–125 (2018)
A. Tadjarodi, O. Akhavan, K. Bijanzad, Photocatalytic activity of CuO nanoparticles incorporated in mesoporous structure prepared from bis (2aminonicotinato) copper(II) micro flakes. Trans. Nonferrous Met. Soc. China 25, 3634–3642 (2015)
M.M. Momeni, Y. Ghayeb, M. Menati, Facile and green synthesis of CuO nanoneedles with high photo catalytic activity. J. Mater. Sci.: Mater Electron. 27, 9454–9460 (2016)
M.M. Momeni, M. Mirhosseini, Z. Nazari, A. Kazempour, M. Hakimiyan, Antibacterial and photocatalytic activity of CuO nanostructure films with different morphology. J. Mater. Sci.: Mater. Electron. 27, 8131–8137 (2016)
R.O. Yathisha, Y. Arthoba Nayaka, Structural, optical and electrical properties of zinc incorporated copper oxide nanoparticles: doping effect of Zn. J. Mater. Sci. 53, 678–691 (2018)
R.O. Yathisha, Y. Arthoba Nayaka, P. Manjunatha, H.T. Purushothama, M.M. Vinay, K.V. Basavarajappa, Study on the effect of Zn2+ doping on optical and electrical properties of CuO nanoparticles. Physica. E: Low-dimensional Syst. Nanostruct. 108, 257–268 (2019)
S. Anandh Jesuraj, M. Suganthi Devadason, M.D. Kumar, Effect of quantum confinement in CdSe/Se multilayer thin films prepared by PVD technique. Mater. Sci. Semicond. Process. 64, 109–114 (2017)
A. Khorsand Zak, W.H. Abd, M.E.A. Majid, Ramin Yousefi, X-ray analysis of ZnO nanoparticles by Williamson- Hall and size- train plot methods. Solid State Sci. 13, 251–256 (2011)
T. Yu, X. Zhao, Z.X. Shen, Y.H. Wu, W.H. Su, Investigation of individual CuO nanorods by polarized micro-Raman scattering. J. Cryst. Growth 268, 590–595 (2004)
J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, Raman spectra of CuO nanocrystals. J. Raman Spectro. 30, 413–415 (1999)
P. Lignier, R. Bellabarba, R.P.R. Tooze, Scalable strategies for the synthesis of well-defined copper metal and oxide nanocrystals. Chem. Soc. Rev. 41, 1708–1720 (2012)
W. Wang, L. Wang, H. Shi, Y. Liang, A room temperature chemical route for large scale synthesis of sub-15 nm ultra-long CuO with strong size effect and enhanced photocatalytic activity. Cryst. Eng. Comm. 14, 5914–5922 (2012)
A. El-Trass, H. ElShamy, I. El-Mehasseb, M. El-Kemary, CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 258(7), 2997–3001 (2012)
S. Ruhle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. Chem. Phys. Chem. 11, 2290–2304 (2010)
M. Alonso, I. Marcus, M. Garriga, A. Goñi, J. Jedrzejewski, I. Balberg, Evidence of quantum confinement effects on inter-band optical transitions in Si nanocrystals. Phys. Rev. B 82, 1–8 (2010)
I.Sheebha, VanisreeVenugopal, Judy James, V.Maheskumar, A.Sakunthala and B.Vidhya, Comparative studies on hierarchical flower like Cu2XSnS4[X= Zn, Ni, Mn & Co] quaternary semiconductor for electrocatalytic and photocatalytic applications, International Journal of Hydrogen Energy, 45, 15, 18 (2020), 8139–8150
H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Nanostructured tungsten oxide – properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2196 (2011)
A. Ogwu, T. Darma, E. Bouquerel, Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering. J. Achiev. Mater. Manufact. Eng. 24, 172–177 (2007)
K. Borgohain, S. Mahamuni, Formation of single-phase CuO quantum particles. J. Mater. Res. 17, 1220–1223 (2002)
F. Marabelli, G. Parravicini, F. Salghetti-Drioli, Optical gap of CuO. Phys. Rev. B 52, 1433–1436 (1995)
R. Al-Gaashani, S. Radiman, N. Tabet, A. Razak Daud, Synthesis and optical properties of CuO nanostructures obtained via a novel thermal decomposition method. J. Alloys Compd. 509, 8761–9 (2011)
M. Yang, J. He, X. Hu, C. Yan, Z. Cheng, CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas. Environ. Sci. Technol. 45, 6088–6094 (2011)
Q. Zhang, K. Zhang, Xu. Daguo, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208–337 (2014)
A. Sahai, S.D. Navendu Goswami, S.T. Kaushik, Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization. Appl. Surface Sci. 390, 974–983 (2016)
A. Umar, J.H. Lee, R. Kumar, O. Al Dossary, A.A. Ibrahim, S. Baskoutas, Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures. Mater. Des. 106, 16–24 (2016)
C. Yang, X. Su, J. Wang, X. Cao, S. Wang, L. Zhang, Facile microwave-assisted hydrothermal synthesis of varied-shaped CuO nanoparticles and their gas sensing properties. Sens. Actuators B: Chem. 185, 159–165 (2013)
M. Naseem Siddique, A. Ahmed, T. Ali, P. Tripathi, Optical band gap, Urbach energy and defect related Photoluminescence in Ni0.95 Al0.05O Nanostructure. IOP Conf. Series: Mater. Sci. Eng. 577, 012036 (2019)
J. Lv, C. Liu, W. Gong, Z. Zi, X. Chen, K. Huang, T. Wang, G. He, X. Song, Z. Sun, Effect of solution concentrations on crystal structure, surface topographies and photoluminescence properties of ZnO thin films. Superlattices Microstruct. 51, 886–892 (2012)
A. Muthuvel, M. Jothibas, C. Manoharan, Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity. Nanotechnol. Environ. Eng. 5, 14 (2020)
E. Bruno, M. Haris, A. Mohan et al., Formation of self-assembled hierarchical structure on Zn doped in CuO nanoparticle using a microwave-assisted chemical precipitation approach. J. Mater. Sci.: Mater. Electron. 32, 19339–19351 (2021)
S. Sonia, S. Poongodi, P. Suresh Kumar, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Hydrothermal synthesis of highly stable CuO nanostructures for efficient photocatalytic degradation of organic dyes. Mater. Sci. Semiconductor Process. 30, 585–591 (2015)
R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J. Ind. Eng. Chem. 31, 173–184 (2015)
Acknowledgements
The authors (Bruno and Mohan) gratefully acknowledge the use of furnace and oven bought under the DST FIST fund (DST/FIST/PHY/2018-19) awarded to St. Joseph’s College (Autonomous).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bruno, E., Haris, M., Mohan, A. et al. Temperature effect on CuO nanoparticles via facile hydrothermal approach to effective utilization of UV–visible region for photocatalytic activity. Appl. Phys. A 127, 925 (2021). https://doi.org/10.1007/s00339-021-05081-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-021-05081-9
Keywords
- Hydrothermal
- Monoclinic
- CuO
- Photocatalytic