Skip to main content
Log in

Temperature effect on CuO nanoparticles via facile hydrothermal approach to effective utilization of UV–visible region for photocatalytic activity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, CuO nanoparticles have been synthesized successfully using the facile hydrothermal approach with various reaction temperatures (60–220 °C). The structural, optical, compositional, and morphology are studied using various analytical techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), diffuse reflectance spectroscopy (DRS), energy-dispersive X-ray analysis (EDAX), laser Raman spectroscopy, and photoluminescence (PL) spectroscopy. The X-ray diffraction pattern revealed pure CuO with monoclinic structure, and the laser Raman study supports XRD results. The FTIR analysis confirmed a pure CuO phase, and elemental studies confirm the CuO stoichiometry. The optical band gap was estimated in between 1.46 and 1.53 eV, and the band gap values are varied due to grain size. The FESEM images reveal those different morphologies such as a mixture of rods with needles, feathers, and a sheaf of rods with different temperatures with the function of temperatures. The change in PL intensity and peak shift was found, and the low recombination of charger carrier was obtained for 180 °C nanoparticles. The photocatalytic degradation efficiency was found to be 67–92% with different temperatures, and the highest degradation was 92% for 180 °C NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Vinothkumar, C. Manoharan, B. Shanmugapriya et al., Effect of reaction time on structural, morphological, optical and photocatalytic properties of copper oxide (CuO) nanostructures. J. Mater. Sci.: Mater. Electron 30, 6249–6262 (2019)

    Google Scholar 

  2. C. Yang, F. Xiao, J. Wang, X. Su, 3D flower and 2D sheet-like CuO nanostructures: microwave-assisted synthesis and application in gas sensors. Sens. Actuators, B Chem. 207, 177–185 (2015)

    Article  Google Scholar 

  3. C. Tamuly, M. Hazarika, J. Das, M. Bordoloi, D.J. Borah, M.R. Das, Bio-derived CuO nanoparticles for the photocatalytic treatment of dyes. Mater. Lett. 123, 202–205 (2014)

    Article  Google Scholar 

  4. S. Singh, N. Kumar, M.K. Jyoti, A. Agarwal, B. Mizaikoff, Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chem. Eng. J. 313, 283–292 (2017)

    Article  Google Scholar 

  5. S. Masudy-Panah, M. Kakran, Y.F. Lim, C.S. Chua, H. Tan, G.K. Dalapatia, Graphene nanoparticle incorporated CuO thin film for solar cell application. J. Renew. Sustain. Energy Rev. 8, 043507–043507 (2016)

    Article  Google Scholar 

  6. M.E. Grigore, E.R. Biscu, A.M. Holban, M.C. Gestal, A.M. Grumezescu, Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 9, 75 (2016)

    Article  Google Scholar 

  7. A. Jabbar, I. Qasim, M. Mumtaz, K. Nadeem, Synthesis and superconductivity of (Ag)x/CuTl-1223 composites. Prog. Nat. Sci: Mater. Int. 25, 204–208 (2015)

    Article  Google Scholar 

  8. Z. Wang, F. Su, S. Madhavi, X.W. Lou, CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale 3, 1618–1623 (2011)

    Article  ADS  Google Scholar 

  9. N.M. Shaalan, M. Rashad, M.A. Abdel-Rahim, CuO nanoparticles synthesized by microwave-assisted method for methane sensing. Opt. Quant. Electron. 48, 1–11 (2016)

    Article  Google Scholar 

  10. J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, P.X. Yan, CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268–273 (2008)

    Article  Google Scholar 

  11. M. Outokesh, M. Hosseinpour, S.J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Hydrothermal synthesis of CuO nanoparticles: study on effects of operational conditions on yield, purity, and size of the nanoparticles. Ind. Eng. Chem. Res. 50(6), 3540–3554 (2011)

    Article  Google Scholar 

  12. X. Ma, S. Zeng, B. Zou, X. Liang, J. Liao, C. Chen, Synthesis of different CuO nanostructures by a new catalytic template method as anode materials for lithium-ion batteries. RSC Adv. 5, 57300–57308 (2015)

    Article  ADS  Google Scholar 

  13. N. Malviya, G. Carpenter, N. Oswal, N. Gupta, Synthesis and characterization of CuO nano particles using precipitation method. AIP Conf. Proc. 1665, 050038–050043 (2015)

    Article  Google Scholar 

  14. H.R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, H. Nagabhushana, Green synthesis of CuO nanoparticles using Gloriosasuperba L. extract and their antibacterial activity. J. Taibah University Sci. 9, 7–12 (2015)

    Article  Google Scholar 

  15. M. Behera, G. Giri, Inquiring the photocatalytic activity of cuprous oxide nanoparticles synthesized by a green route on methylene blue dye. Inter. J. Ind. Chem. 7, 157–166 (2016)

    Article  Google Scholar 

  16. X. Li, W. Guo, H. Huang, T. Chen, M. Zhang, Y. Wang, Synthesis and photocatalytic properties of CuO nanostructures. J. Nanosci. Nanotechnol. 14, 3428–3432 (2014)

    Article  Google Scholar 

  17. A. Aslani, Controlling the morphology and size of CuO nanostructures with synthesis by solvo/hydrothermal method without any additives. Physica. B Condens. Mater. 406, 150–154 (2011)

    Article  ADS  Google Scholar 

  18. T. Zhou, Z. Zang, J. Wei, J. Zheng, J. Hao, F. Ling, X. Tang, L. Fang, M. Zhou, Efficient charge carrier separation and excellent visible light photoresponse in Cu2O nanowires. Nano Energy 50, 118–125 (2018)

    Article  Google Scholar 

  19. A. Tadjarodi, O. Akhavan, K. Bijanzad, Photocatalytic activity of CuO nanoparticles incorporated in mesoporous structure prepared from bis (2aminonicotinato) copper(II) micro flakes. Trans. Nonferrous Met. Soc. China 25, 3634–3642 (2015)

    Article  Google Scholar 

  20. M.M. Momeni, Y. Ghayeb, M. Menati, Facile and green synthesis of CuO nanoneedles with high photo catalytic activity. J. Mater. Sci.: Mater Electron. 27, 9454–9460 (2016)

    Google Scholar 

  21. M.M. Momeni, M. Mirhosseini, Z. Nazari, A. Kazempour, M. Hakimiyan, Antibacterial and photocatalytic activity of CuO nanostructure films with different morphology. J. Mater. Sci.: Mater. Electron. 27, 8131–8137 (2016)

    Google Scholar 

  22. R.O. Yathisha, Y. Arthoba Nayaka, Structural, optical and electrical properties of zinc incorporated copper oxide nanoparticles: doping effect of Zn. J. Mater. Sci. 53, 678–691 (2018)

    Article  ADS  Google Scholar 

  23. R.O. Yathisha, Y. Arthoba Nayaka, P. Manjunatha, H.T. Purushothama, M.M. Vinay, K.V. Basavarajappa, Study on the effect of Zn2+ doping on optical and electrical properties of CuO nanoparticles. Physica. E: Low-dimensional Syst. Nanostruct. 108, 257–268 (2019)

    Article  ADS  Google Scholar 

  24. S. Anandh Jesuraj, M. Suganthi Devadason, M.D. Kumar, Effect of quantum confinement in CdSe/Se multilayer thin films prepared by PVD technique. Mater. Sci. Semicond. Process. 64, 109–114 (2017)

    Article  Google Scholar 

  25. A. Khorsand Zak, W.H. Abd, M.E.A. Majid, Ramin Yousefi, X-ray analysis of ZnO nanoparticles by Williamson- Hall and size- train plot methods. Solid State Sci. 13, 251–256 (2011)

    Article  ADS  Google Scholar 

  26. T. Yu, X. Zhao, Z.X. Shen, Y.H. Wu, W.H. Su, Investigation of individual CuO nanorods by polarized micro-Raman scattering. J. Cryst. Growth 268, 590–595 (2004)

    Article  ADS  Google Scholar 

  27. J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, Raman spectra of CuO nanocrystals. J. Raman Spectro. 30, 413–415 (1999)

    Article  ADS  Google Scholar 

  28. P. Lignier, R. Bellabarba, R.P.R. Tooze, Scalable strategies for the synthesis of well-defined copper metal and oxide nanocrystals. Chem. Soc. Rev. 41, 1708–1720 (2012)

    Article  Google Scholar 

  29. W. Wang, L. Wang, H. Shi, Y. Liang, A room temperature chemical route for large scale synthesis of sub-15 nm ultra-long CuO with strong size effect and enhanced photocatalytic activity. Cryst. Eng. Comm. 14, 5914–5922 (2012)

    Article  Google Scholar 

  30. A. El-Trass, H. ElShamy, I. El-Mehasseb, M. El-Kemary, CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 258(7), 2997–3001 (2012)

    Article  ADS  Google Scholar 

  31. S. Ruhle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. Chem. Phys. Chem. 11, 2290–2304 (2010)

    Article  Google Scholar 

  32. M. Alonso, I. Marcus, M. Garriga, A. Goñi, J. Jedrzejewski, I. Balberg, Evidence of quantum confinement effects on inter-band optical transitions in Si nanocrystals. Phys. Rev. B 82, 1–8 (2010)

    Article  Google Scholar 

  33. I.Sheebha, VanisreeVenugopal, Judy James, V.Maheskumar, A.Sakunthala and B.Vidhya, Comparative studies on hierarchical flower like Cu2XSnS4[X= Zn, Ni, Mn & Co] quaternary semiconductor for electrocatalytic and photocatalytic applications, International Journal of Hydrogen Energy, 45, 15, 18 (2020), 8139–8150

  34. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Nanostructured tungsten oxide – properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2196 (2011)

    Article  Google Scholar 

  35. A. Ogwu, T. Darma, E. Bouquerel, Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering. J. Achiev. Mater. Manufact. Eng. 24, 172–177 (2007)

    Google Scholar 

  36. K. Borgohain, S. Mahamuni, Formation of single-phase CuO quantum particles. J. Mater. Res. 17, 1220–1223 (2002)

    Article  ADS  Google Scholar 

  37. F. Marabelli, G. Parravicini, F. Salghetti-Drioli, Optical gap of CuO. Phys. Rev. B 52, 1433–1436 (1995)

    Article  ADS  Google Scholar 

  38. R. Al-Gaashani, S. Radiman, N. Tabet, A. Razak Daud, Synthesis and optical properties of CuO nanostructures obtained via a novel thermal decomposition method. J. Alloys Compd. 509, 8761–9 (2011)

    Article  Google Scholar 

  39. M. Yang, J. He, X. Hu, C. Yan, Z. Cheng, CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas. Environ. Sci. Technol. 45, 6088–6094 (2011)

    Article  ADS  Google Scholar 

  40. Q. Zhang, K. Zhang, Xu. Daguo, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208–337 (2014)

    Article  Google Scholar 

  41. A. Sahai, S.D. Navendu Goswami, S.T. Kaushik, Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization. Appl. Surface Sci. 390, 974–983 (2016)

    Article  ADS  Google Scholar 

  42. A. Umar, J.H. Lee, R. Kumar, O. Al Dossary, A.A. Ibrahim, S. Baskoutas, Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures. Mater. Des. 106, 16–24 (2016)

    Article  Google Scholar 

  43. C. Yang, X. Su, J. Wang, X. Cao, S. Wang, L. Zhang, Facile microwave-assisted hydrothermal synthesis of varied-shaped CuO nanoparticles and their gas sensing properties. Sens. Actuators B: Chem. 185, 159–165 (2013)

    Article  Google Scholar 

  44. M. Naseem Siddique, A. Ahmed, T. Ali, P. Tripathi, Optical band gap, Urbach energy and defect related Photoluminescence in Ni0.95 Al0.05O Nanostructure. IOP Conf. Series: Mater. Sci. Eng. 577, 012036 (2019)

    Article  Google Scholar 

  45. J. Lv, C. Liu, W. Gong, Z. Zi, X. Chen, K. Huang, T. Wang, G. He, X. Song, Z. Sun, Effect of solution concentrations on crystal structure, surface topographies and photoluminescence properties of ZnO thin films. Superlattices Microstruct. 51, 886–892 (2012)

    Article  ADS  Google Scholar 

  46. A. Muthuvel, M. Jothibas, C. Manoharan, Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity. Nanotechnol. Environ. Eng. 5, 14 (2020)

    Article  Google Scholar 

  47. E. Bruno, M. Haris, A. Mohan et al., Formation of self-assembled hierarchical structure on Zn doped in CuO nanoparticle using a microwave-assisted chemical precipitation approach. J. Mater. Sci.: Mater. Electron. 32, 19339–19351 (2021)

    Google Scholar 

  48. S. Sonia, S. Poongodi, P. Suresh Kumar, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Hydrothermal synthesis of highly stable CuO nanostructures for efficient photocatalytic degradation of organic dyes. Mater. Sci. Semiconductor Process. 30, 585–591 (2015)

    Article  Google Scholar 

  49. R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J. Ind. Eng. Chem. 31, 173–184 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors (Bruno and Mohan) gratefully acknowledge the use of furnace and oven bought under the DST FIST fund (DST/FIST/PHY/2018-19) awarded to St. Joseph’s College (Autonomous).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, E., Haris, M., Mohan, A. et al. Temperature effect on CuO nanoparticles via facile hydrothermal approach to effective utilization of UV–visible region for photocatalytic activity. Appl. Phys. A 127, 925 (2021). https://doi.org/10.1007/s00339-021-05081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05081-9

Keywords

Navigation