Skip to main content
Log in

Effects of different crystallization methods on photocatalytic performance of TiO2 nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

At present, the commonly used crystallization methods of amorphous TiO2 include heat treatment and water-assisted crystallization. However, the cost of heat treatment is high and the morphology of nanotubes is easy to be destroyed, and the crystallinity of water-assisted crystallization is low. In this work, the two treatment methods were combined for the first time, and the effects of different crystallization methods on the photocatalytic performance of TiO2 nanotubes were also studied in detail. The results suggested that the composite treatment did not change the crystalline phase of TiO2 nanotubes, but the water-assisted crystallization could effectively repair the morphological damage caused by high-temperature heat treatment, thus increasing the specific surface area. Photocatalytic research showed that the TiO2 nanotubes crystallized by the composite treatment exhibited enhanced photocatalytic performance compared with those crystallized by the single method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Sadanandam, X. Luo, X. Chen, Y. Bao, K.P. Homewood, Y. Gao, Cu oxide quantum dots loaded TiO2 nanosheet photocatalyst for highly efficient and robust hydrogen generation. Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2020.148687

    Article  Google Scholar 

  2. R. Guan, D. Wang, Y. Zhang, C. Liu, W. Xu, J. Wang, Z. Zhao, M. Feng, Q. Shang, Z. Sun, Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface. Appl. Catal. B-Environ. (2021). https://doi.org/10.1016/j.apcatb.2020.119580

    Article  Google Scholar 

  3. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature (1972). https://doi.org/10.1038/238037a0

    Article  Google Scholar 

  4. Q.X. Zhou, M.Y. Wang, Y.Y. Tong, H.Y. Wang, X.Q. Zhou, X.Y. Sheng, Y. Sun, C.M. Chen, Improved photoelectrocatalytic degradation of tetrabromobisphenol a with silver and reduced graphene oxide-modified TiO2 nanotube arrays under simulated sunlight. Ecotoxicol. Environ. Saf. (2019). https://doi.org/10.1016/j.ecoenv.2019.109472

    Article  Google Scholar 

  5. F. Dong, S. Guo, H. Wang, X.F. Li, Z.B. Wu, Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach. J. Phys. Chem. C (2011). https://doi.org/10.1021/jp111916q

    Article  Google Scholar 

  6. S. Saroj, L. Singh, S.V. Singh, Solution-combustion synthesis of anion (iodine) doped TiO2 nanoparticles for photocatalytic degradation of direct blue 199 dye and regeneration of used photocatalyst. J. Photochem. Photobiol. A-Chem. (2020). https://doi.org/10.1016/j.jphotochem.2020.112532

    Article  Google Scholar 

  7. J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small (2007). https://doi.org/10.1002/smll.200600426

    Article  Google Scholar 

  8. P. Mazierski, W. Lisowski, T. Grzyb et al., Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes: an experimental and theoretical study[J]. Appl. Catal. B-Environ. (2017). https://doi.org/10.1016/j.apcatb.2016.12.044

    Article  Google Scholar 

  9. J. Yang, X. Luo, Ag-doped TiO2 immobilized cellulose-derived carbon beads: one-pot preparation, photocatalytic degradation performance and mechanism of ceftriaxone sodium. Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2020.148724

    Article  Google Scholar 

  10. S. Sun, R. Zhao, Y. Xie, Y. Liu, Reduction of aflatoxin B-1 by magnetic graphene oxide/TiO2 nanocomposite and its effect on quality of corn oil. Food Chem. (2021). https://doi.org/10.1016/j.foodchem.2020.128521

    Article  Google Scholar 

  11. P. Raizada, V. Soni, A. Kumar, P. Singh, A.A.P. Khan, A.M. Asiri, V.K. Thakur, N. Van-Huy, Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. J. Materiomics (2021). https://doi.org/10.1016/j.jmat.2020.10.009

    Article  Google Scholar 

  12. H.R. Li, W. Hong, F.Y. Cai, Q. Tang, Y. Yan, X.B. Hu, B.Y. Zhao, D. Zhang, Z. Xu, Au@SiO2 nanoparticles coupling co-sensitizers for synergic efficiency enhancement of dye sensitized solar cells. J. Mater. Chem. B (2012). https://doi.org/10.1039/c2jm35577a

    Article  Google Scholar 

  13. B.T. Xiong, C.R. Wang, J.Y. Luo, B.X. Chen, B.X. Zhou, Z.Y. Zhu, Highly-ordered dye-sensitized TiO2 nanotube arrays film used for improving photoelectrochemical electrodes. Sci. China-Chem. (2013). https://doi.org/10.1007/s11426-012-4762-z

    Article  Google Scholar 

  14. S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, P. Schmuki, Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett. (2007). https://doi.org/10.1021/nl070264k

    Article  Google Scholar 

  15. J. Vujancevic, A. Bjelajac, J. Cirkovic, V. Pavlovic, E. Horvath, L. Forro, B. Vlahovic, M. Mitric, D. Janackovic, V. Pavlovic, Structure and photocatalytic properties of sintered TiO2 nanotube arrays. Sci. Sinter. (2018). https://doi.org/10.2298/Sos1801039v

    Article  Google Scholar 

  16. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. (2004). https://doi.org/10.1016/j.progsolidstchem.2004.08.001

    Article  Google Scholar 

  17. D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. (2001). https://doi.org/10.1557/JMR.2001.0457

    Article  Google Scholar 

  18. J.M. Macak, K. Sirotna, P. Schmuki, Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta (2005). https://doi.org/10.1016/j.electacta.2005.01.014

    Article  Google Scholar 

  19. F. Hu, X. Lin, S.L. Zhu, X.J. Yang, Z.D. Cui, Anodization formation of through-hole nanoporous layers on TixNb1−x (x=0.3–0.7) alloys in nitric acid electrolytes. Appl. Surf. Sci. (2012). https://doi.org/10.1016/j.apsusc.2011.11.078

    Article  Google Scholar 

  20. J.A. Munoz Chaves, R.F. Macedo dos Santos, V.P. Ricci, A.D.G. Rodrigues, C.R. Moreira Afonso, An exploratory study of TiO2-based multicomponent nanotubes on TiFeNbSn ultrafine eutectic alloy. Surf. Coat. Technol (2021). https://doi.org/10.1016/j.surfcoat.2020.126765

    Article  Google Scholar 

  21. Z. Khalilian, A. Najafi Chermahini, M.M. Momeni, J. Najafi Sarpiri, M. Motalebian, A new catalytic system for oxidative desulfurization of model diesel by hierarchical TiO2 nanotube arrays on titanium foil. J. Porous Mater. (2021). https://doi.org/10.1007/s10934-020-01021-9

    Article  Google Scholar 

  22. T. Yanagishita, H. Hirose, T. Kondo, P. Schmuki, H. Masuda, Fabrication of ideally ordered TiO2 through-hole membranes by two-layer anodization. RSC Adv. (2020). https://doi.org/10.1039/d0ra07650c

    Article  Google Scholar 

  23. H.Y. Hwang, A.A. Prabu, D.Y. Kim, K.J. Kim, Influence of the organic electrolyte and anodization conditions on the preparation of well-aligned TiO2 nanotube arrays in dye-sensitized solar cells. Solar Energy (2011). https://doi.org/10.1016/j.solener.2011.04.017

    Article  Google Scholar 

  24. J. Singh, K. Sahu, B. Satpati, S. Mohapatra, Facile synthesis, structural, optical and photocatalytic properties of anatase/rutile mixed phase TiO2 ball-like sub-micron structures. Optik (2019). https://doi.org/10.1016/j.ijleo.2019.05.053

    Article  Google Scholar 

  25. F. Fu, G. Cha, Z. Wu, S. Qin, Y. Zhang, Y. Chen, P. Schmuki, Photocatalytic hydrogen generation from water-annealed TiO2 nanotubes with white and grey modification. Chemelectrochem (2021). https://doi.org/10.1002/celc.202001517

    Article  Google Scholar 

  26. Y.L. Liao, W.X. Que, P. Zhong, J. Zhang, Y.C. He, A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature. ACS Appl. Mater. Interfaces (2011). https://doi.org/10.1021/am200685s

    Article  Google Scholar 

  27. B.M. Rao, S.C. Roy, Water assisted crystallization, gas sensing and photo-electrochemical properties of electrochemically synthesized TiO2 nanotube arrays. RSC Adv. (2014). https://doi.org/10.1039/c4ra06842d

    Article  Google Scholar 

  28. Y.L. Liao, X.Y. Wang, Y.B. Ma, J. Li, T.L. Wen, L.J. Jia, Z.Y. Zhong, L.P. Wang, D.N. Zhang, New mechanistic insight of low temperature crystallization of anodic TiO2 nanotube array in water. Cryst. Growth Des. (2016). https://doi.org/10.1021/acs.cgd.5b01234

    Article  Google Scholar 

  29. K. Yanagisawa, J. Ovenstone, Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J. Phys. Chem. B (1999). https://doi.org/10.1021/jp990521c

    Article  Google Scholar 

  30. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale (2010). https://doi.org/10.1039/b9nr00131j

    Article  Google Scholar 

  31. N. Liu, S.P. Albu, K. Lee, S. So, P. Schmuki, Water annealing and other low temperature treatments of anodic TiO2 nanotubes: a comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. Electrochim. Acta (2012). https://doi.org/10.1016/j.electacta.2012.06.006

    Article  Google Scholar 

  32. X.J. Nie, J.K. Wang, W.C. Duan, Z.L. Zhao, L. Li, Z.Q. Zhang, One-step preparation of C-doped TiO2 nanotubes with enhanced photocatalytic activity by a water-assisted method. Crystengcomm (2021). https://doi.org/10.1039/d1ce00288k

    Article  Google Scholar 

  33. D.H. Li, S.W. Lin, S.P. Li, X. Huang, X.K. Cao, J.B. Li, Effects of geometric and crystal structures on the photoelectrical properties of highly ordered TiO2 nanotube arrays. J. Mater. Res. (2012). https://doi.org/10.1557/jmr.2012.38

    Article  Google Scholar 

  34. J.I. Langford, A.J.C. Wilson, Scherrer after 60 years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. (2015). https://doi.org/10.1063/1.4928401

    Article  Google Scholar 

  35. X.Y. Wang, D.N. Zhang, Q.J. Xiang, Z.Y. Zhong, Y.L. Liao, Review of water-assisted crystallization for TiO2 nanotubes. Micro Nano Lett. (2018). https://doi.org/10.1007/s40820-018-0230-4

    Article  Google Scholar 

  36. L. Saadoun, J.A. Ayllon, J. Jimenez-Becerril, J. Peral, X. Domenech, R. Rodriguez-Clemente, 1,2-diolates of titanium as suitable precursors for the preparation of photoactive high surface titania. Appl. Catal. B-Environ. (1999). https://doi.org/10.1016/S0926-3373(99)00031-4

    Article  Google Scholar 

  37. C. Chen, M. Long, H. Zeng, W. Cai, D. Wu, Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. J. Mol. Catal. A Chem. (2009). https://doi.org/10.1016/j.molcata.2009.08.014

    Article  Google Scholar 

  38. Y.Z. Li, D.S. Hwang, N.H. Lee et al., Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst[J]. Chem. Phys. Lett. (2005). https://doi.org/10.1016/j.cplett.2005.01.062

    Article  Google Scholar 

  39. S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. (2010). https://doi.org/10.1002/anie.200351577

    Article  Google Scholar 

  40. X. Zhao, Y. Zhang, M. Wu, W. Szeto, Y. Wang, W. Pan, D.Y.C. Leung, Carbon doped ultra-small TiO2 coated on carbon cloth for efficient photocatalytic toluene degradation under visible LED light irradiation. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.146780

    Article  Google Scholar 

  41. L.J. Han, Z. Ma, Z.H. Luo, G. Liu, J.T. Ma, X.C. An, Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature. RSC Adv. (2016). https://doi.org/10.1039/C5RA11616C

    Article  Google Scholar 

  42. Y. Dong, X.N. Fei, Y.Z. Zhou, Synthesis and photocatalytic activity of mesoporous–(001) facets TiO2 single crystals. Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.01.210

    Article  Google Scholar 

  43. N.S. Allen, N. Mahdjoub, V. Vishnyakov, P.J. Kelly, R.J. Kriek, The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polym. Degrad. Stab. (2018). https://doi.org/10.1016/j.polymdegradstab.2018.02.008

    Article  Google Scholar 

  44. S.S. Watson, D. Beydoun, J.A. Scott, R. Amal, The effect of preparation method on the photoactivity of crystalline titanium dioxide particles. Chem. Eng. J. (2003). https://doi.org/10.1016/S1385-8947(03)00107-4

    Article  Google Scholar 

  45. F. Adnan, S. Phattarapattamawong, Enhancing photocatalytic degradation of methyl orange by crystallinity transformation of titanium dioxide: a kinetic study. Water Environ. Res. (2019). https://doi.org/10.1002/wer.1100

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFB0301101), the National Natural Science Foundation of China (Grant No. 51971054), the Fundamental Research Funds for the Central Universities (Grant No. N180904006 and N2009006).

Author information

Authors and Affiliations

Authors

Contributions

All authors have given approval to the final version of the manuscript. These authors contributed equally.

Corresponding author

Correspondence to Zhiqiang Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, X., Wang, J., Duan, W. et al. Effects of different crystallization methods on photocatalytic performance of TiO2 nanotubes. Appl. Phys. A 127, 879 (2021). https://doi.org/10.1007/s00339-021-05041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05041-3

Keywords

Navigation