Skip to main content

Advertisement

Log in

Surface effects and wettability measurement considerations in fluorinated carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

With the growing demand of incorporating inherently hydrophobic carbon-based materials including carbon nanotubes (CNTs) with the surrounding medium (air, water, biofluids, etc.), it is inevitable to modify their surface chemistry and wettability with functionalization. Sidewall fluorination of the CNTs has attracted a lot of interest for its effectiveness in surface modification and switching surface wettability. Along with characterization techniques such as Raman and FESEM performed on the as-grown fluorinated CNTs surfaces, surface free energies were calculated based on the contact angle results. Detecting the proficiency of the fluorination treatments on wettability requires reliable water contact angle measurements on non-ideal solid surfaces where local energy minima are separated by energy barriers and the deposited static drop can be in any free energy minimum. Advancing contact angle (ACA) and receding contact angle (RCA) methods were applied to the fluorinated CNTs as well as static contact angle measurements. The former with higher reliability, to date, have not been used on nanotube-covered surfaces. Both methods confirmed the efficiency of tuning wettability of CNTs surfaces with fluorination while ACA–RCA method presented benefits on understanding the surface properties over the static contact angle measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Wang, J.T. Yeow, A review of carbon nanotubes-based gas sensors. J. Sensors (2009). https://doi.org/10.1155/2009/493904

    Article  Google Scholar 

  2. Q. Xu, W. Li, L. Ding, W. Yang, H. Xiao, W.J. Ong, Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale 11(4), 1475–1504 (2019)

    Google Scholar 

  3. W. Zhang, P. Bonnet, M. Dubois, C.P. Ewels, K. Guérin, E. Petit et al., Comparative study of SWCNT fluorination by atomic and molecular fluorine. Chem. Mater. 24(10), 1744–1751 (2012)

    Google Scholar 

  4. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006)

    Google Scholar 

  5. P. Rivolo, Nanostructures for surface functionalization and surface properties, in Encyclopedia of Nanotechnology. ed. by B. Bhushan (Springer, Dordrecht, 2012)

    Google Scholar 

  6. J.S. Im, S.C. Kang, B.C. Bai, T.S. Bae, S.J. In, E. Jeong et al., Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor. Carbon 49(7), 2235–2244 (2011)

    Google Scholar 

  7. C. Struzzi, M. Scardamaglia, J. Casanova-Cháfer, R. Calavia, J.F. Colomer, A. Kondyurin, Exploiting sensor geometry for enhanced gas sensing properties of fluorinated carbon nanotubes under humid environment. Sens. Actuators, B Chem. 281, 945–952 (2019)

    Google Scholar 

  8. J.Y. Lee, K.H. An, J.K. Heo, Y.H. Lee, Fabrication of supercapacitor electrodes using fluorinated single-walled carbon nanotubes. J. Phys. Chem. B 107(34), 8812–8815 (2003)

    Google Scholar 

  9. V.N. Khabashesku, J.L. Margrave, E.V. Barrera, Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diam. Relat. Mater. 14(3–7), 859–866 (2005)

    ADS  Google Scholar 

  10. H. Miyagawa, M.J. Rich, L.T. Drzal, Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers. Thermochim. Acta 442(1–2), 67–73 (2006)

    Google Scholar 

  11. R.L. Vander Wal, K. Miyoshi, K.W. Street, A.J. Tomasek, H. Peng, Y. Liu et al., Friction properties of surface-fluorinated carbon nanotubes. Wear 259(1–6), 738–743 (2005)

    Google Scholar 

  12. S.M. Hong, V. Etacheri, C.N. Hong, S.W. Choi, K.B. Lee, V.G. Pol, Enhanced lithium-and sodium-ion storage in an interconnected carbon network comprising electronegative fluorine. ACS Appl. Mater. Interfaces. 9(22), 18790–18798 (2017)

    Google Scholar 

  13. M.S. Park, K.H. Kim, Y.S. Lee, Fluorination of single-walled carbon nanotube: the effects of fluorine on structural and electrical properties. J. Ind. Eng. Chem. 37, 22–26 (2016)

    Google Scholar 

  14. L.G. Bulusheva, Y.V. Fedoseeva, A.V. Okotrub, E. Flahaut, I.P. Asanov, V.O. Koroteev et al., Stability of fluorinated double-walled carbon nanotubes produced by different fluorination techniques. Chem. Mater. 22(14), 4197–4203 (2010)

    Google Scholar 

  15. N.J. Saikia, C. Ewels, J.F. Colomer, B. Aleman, M. Amati, L. Gregoratti et al., Plasma fluorination of vertically aligned carbon nanotubes. J. Phys. Chem. C 117(28), 14635–14641 (2013)

    Google Scholar 

  16. M. Lu, Q. He, Y. Li, F. Guo, Z. Dai, The effects of radiofrequency CF4 plasma on adhesion properties of vertically aligned carbon nanotube arrays. Carbon 142, 592–598 (2019)

    Google Scholar 

  17. Y.W. Zhu, F.C. Cheong, T. Yu, X.J. Xu, C.T. Lim, J.T.L. Thong et al., Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotube films. Carbon 43(2), 395–400 (2005)

    Google Scholar 

  18. N.O.V. Plank, L. Jiang, R. Cheung, Fluorination of carbon nanotubes in CF 4 plasma. Appl. Phys. Lett. 83(12), 2426–2428 (2003)

    ADS  Google Scholar 

  19. Z. Hou, B. Cai, H. Liu, D. Xu, Ar, O2, CHF3, and SF6 plasma treatments of screen-printed carbon nanotube films for electrode applications. Carbon 46(3), 405–413 (2008)

    Google Scholar 

  20. Y.V. Lavskaya, L.G. Bulusheva, A.V. Okotrub, N.F. Yudanov, D.V. Vyalikh, A. Fonseca, Comparative study of fluorinated single-and few-wall carbon nanotubes by X-ray photoelectron and X-ray absorption spectroscopy. Carbon 47(7), 1629–1636 (2009)

    Google Scholar 

  21. L. Xiaoning, L. Fengyi, H. Li, Z.H. Huai, Modification of carbon nanotubes and its applications. J New chem mater 34(6), 25–26 (2006)

    Google Scholar 

  22. H.Y. Du, J. Wang, P.J. Yao, Y.W. Hao, X.G. Li, Preparation of modified MWCNTs-doped PANI nanorods by oxygen plasma and their ammonia-sensing properties. J. Mater. Sci. 48(9), 3597–3604 (2013)

    ADS  Google Scholar 

  23. P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A Appl. Sci. Manuf. 41(10), 1345–1367 (2010)

    Google Scholar 

  24. A.K. Karumuri, L. He, S.M. Mukhopadhyay, Tuning the surface wettability of carbon nanotube carpets in multiscale hierarchical solids. Appl. Surf. Sci. 327, 122–130 (2015)

    ADS  Google Scholar 

  25. Y. Yuan, T.R. Lee, Contact angle and wetting properties. In Surface science techniques, Springer, Berlin, Heidelberg, 3–34 (2013)

  26. T. Huhtamäki, X. Tian, J.T. Korhonen, R.H. Ras, Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 13(7), 1521–1538 (2018)

    Google Scholar 

  27. D. Quéré, Wetting and roughness. Ann. Rev. Mater. Res. 38, 71–99 (2008)

    ADS  Google Scholar 

  28. R.E. Johnson Jr, R.H. Dettre, Surface and colloid science, Vol. II, E. Matejevic ed., Wiley-Interscience, 140–42 (1969)

  29. A. Marmur, Thermodynamic aspects of contact angle hysteresis. Adv. Coll. Interface. Sci. 50, 121–141 (1994)

    Google Scholar 

  30. A. Marmur, Contact angle hysteresis on heterogeneous smooth surfaces. J. Colloid Interface Sci. 168(1), 40–46 (1994)

    ADS  Google Scholar 

  31. T. Yasuda, T. Okuno, H. Yasuda, Contact angle of water on polymer surfaces. Langmuir 10(7), 2435–2439 (1994)

    Google Scholar 

  32. A. Marmur, Wetting on real surfaces. J. Imaging Sci. Technol. 44(5), 406–409 (2000)

    Google Scholar 

  33. C. Andrieu, C. Sykes, F. Brochard, Average spreading parameter on heterogeneous surfaces. Langmuir 10(7), 2077–2080 (1994)

    Google Scholar 

  34. Y. Abdi, J. Koohsorkhi, J. Derakhshandeh, S. Mohajerzadeh, H. Hoseinzadegan, M.D. Robertson et al., PECVD-grown carbon nanotubes on silicon substrates with a nickel-seeded tip-growth structure. Mater. Sci. Eng. C 26(5–7), 1219–1223 (2006)

    Google Scholar 

  35. A.S. Kazemi, Z.E. Nataj, Y. Abdi, M.A. Abdol, Tuning wettability and surface order of MWCNTs by functionalization for water desalination. Desalination 508, 115049 (2021)

    Google Scholar 

  36. Y. Liu, Y. Zhang, C. Zhang, B. Huang, X. Wang, Y. Li et al., Aligned fluorinated single-walled carbon nanotubes as a transmission channel towards attenuation of broadband electromagnetic waves. J. Mater. Chem. C 6(35), 9399–9409 (2018)

    Google Scholar 

  37. M. Adamska, U. Narkiewicz, Fluorination of carbon nanotubes: a review. J. Fluorine Chem. 200, 179–189 (2017)

    Google Scholar 

  38. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari et al., Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90(10), 5308–5317 (2001)

    ADS  Google Scholar 

  39. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010)

    ADS  Google Scholar 

  40. A. Jorio, M.A. Pimenta, A.G. Souza Filho, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys. 5(1), 139 (2003)

    ADS  Google Scholar 

  41. H. Qi, J. Liu, S. Gao, E. Mäder, Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline–urea solution. J. Mater. Chem. A 1(6), 2161–2168 (2013)

    Google Scholar 

  42. D. Baskaran, J.W. Mays, M.S. Bratcher, Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chem. Mater. 17(13), 3389–3397 (2005)

    Google Scholar 

  43. K.L. Strong, D.P. Anderson, K. Lafdi, J.N. Kuhn, Purification process for single-wall carbon nanotubes. Carbon 41(8), 1477–1488 (2003)

    Google Scholar 

  44. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40, 2043–2061 (2002)

    Google Scholar 

  45. A.C. Dillon, T. Gennett, K.M. Jones, J.L. Alleman, P.A. Parilla, M.J. Heben, Quantum rotation of hydrogen in single-wall carbon nanotubes. J. Adv. Mater 11, 1354–1358 (1999)

    Google Scholar 

  46. M.E. Itkis, D.E. Perea, R. Jung, S. Niyogi, R.C. Haddon, Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J. Am. Chem. Soc. 127(10), 3439–3448 (2005)

    Google Scholar 

  47. H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen, S. Suzuki et al., Diameter control of single-walled carbon nanotubes. Carbon 38(11–12), 1691–1697 (2000)

    Google Scholar 

  48. V.O. Koroteev, L.G. Bulusheva, I.P. Asanov, E.V. Shlyakhova, D.V. Vyalikh, A.V. Okotrub, Charge transfer in the MoS2/carbon nanotube composite. J. Phys. Chem. C 115(43), 21199–21204 (2011)

    Google Scholar 

  49. K.J. Kubiak, M.C.T. Wilson, T.G. Mathia, P. Carval, Wettability versus roughness of engineering surfaces. Wear 271(3–4), 523–528 (2011)

    Google Scholar 

  50. T.T. Chau, W.J. Bruckard, P.T.L. Koh, A.V. Nguyen, A review of factors that affect contact angle and implications for flotation practice. Adv. Coll. Interface. Sci. 150(2), 106–115 (2009)

    Google Scholar 

  51. J. Zheng, M. Li, K. Yu, J. Hu, X. Zhang, L. Wang, Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property. J. Membr. Sci. 524, 344–353 (2017)

    Google Scholar 

  52. M. Sianipar, S.H. Kim, F. Iskandar, I.G. Wenten, Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv. 7(81), 51175–51198 (2017)

    ADS  Google Scholar 

  53. M. Majumder, B. Corry, Anomalous decline of water transport in covalently modified carbon nanotube membranes. Chem. Commun. 47(27), 7683–7685 (2011)

    Google Scholar 

  54. J.S. Im, I.J. Park, S.J. In, T. Kim, Y.S. Lee, Fluorination effects of MWCNT additives for EMI shielding efficiency by developed conductive network in epoxy complex. J. Fluorine Chem. 130(12), 1111–1116 (2009)

    Google Scholar 

  55. E. Van Hooijdonk, C. Bittencourt, R. Snyders, J.F. Colomer, Functionalization of vertically aligned carbon nanotubes. Beilstein J. Nanotechnol. 4(1), 129–152 (2013)

    Google Scholar 

  56. A.S. Kazemi, Z. Ebrahim Nataj, Y. Abdi, Sidewall hydrogenation impact on the structure and wettability of spaghetti MWCNTs. Appl. Phys. A 126(691), 691 (2020)

    ADS  Google Scholar 

  57. Y.C. Hong, H.S. Uhm, Superhydrophobicity of a material made from multiwalled carbon nanotubes. Appl. Phys. Lett. 88(24), 244101 (2006)

    ADS  Google Scholar 

  58. S.H. Gao, L.H. Gao, Influence on hydrophobicity of silicone rubber surface by introducing fluorocarbon functional groups. Appl. Phys. A-Mater. 118(2), 531–537 (2015)

    ADS  Google Scholar 

  59. R.M. Thurston, J.D. Clay, M.D. Schulte, Effect of atmospheric plasma treatment on polymer surface energy and adhesion. J. Plastic Film Sheet. 23(1), 63–78 (2007)

    Google Scholar 

  60. W. Feng, P. Long, Y. Feng, Y. Li, Two-dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv. Sci. 3(7), 1500413 (2016)

    Google Scholar 

  61. Z. Wang, J. Wang, Z. Li, P. Gong, X. Liu, L. Zhang et al., Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 50(15), 5403–5410 (2012)

    Google Scholar 

  62. M. Acik, S. Yagneswaran, W. Peng, G. Lee, B.R. Lund, D.W. Smith Jr. et al., Spectroscopic evaluation of out-of-plane surface vibration bands from surface functionalization of graphite oxide by fluorination. Carbon 77, 577–591 (2014)

    Google Scholar 

  63. Y. Wang, W.C. Lee, K.K. Manga, P.K. Ang, J. Lu, Y.P. Liu et al., Fluorinated graphene for promoting neuro-induction of stem cells. Adv. Mater. 24(31), 4285–4290 (2012)

    Google Scholar 

  64. T. Young, III: an essay on the cohesion of fluids. Philos. Trans. R. Soc. London 95, 65–87 (1805)

    ADS  Google Scholar 

  65. R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936)

    Google Scholar 

  66. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    Google Scholar 

  67. L. He, A. Karumuri, S.M. Mukhopadhyay, Wettability tailoring of nanotube carpets: morphology-chemistry synergy for hydrophobic–hydrophilic cycling. RSC Adv. 7(41), 25265–25275 (2017)

    ADS  Google Scholar 

  68. F. Taherian, V. Marcon, N.F. van der Vegt, F. Leroy, What is the contact angle of water on graphene? Langmuir 29(5), 1457–1465 (2013)

    Google Scholar 

  69. E. Singh, A.V. Thomas, R. Mukherjee, X. Mi, F. Houshmand, Y. Peles et al., Graphene drape minimizes the pinning and hysteresis of water drops on nanotextured rough surfaces. ACS Nano 7(4), 3512–3521 (2013)

    Google Scholar 

  70. J. Long, P. Chen, On the role of energy barriers in determining contact angle hysteresis. Adv. Coll. Interface. Sci. 127(2), 55–66 (2006)

    Google Scholar 

  71. C.W. Extrand, Y. Kumagai, Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force. J. Colloid Interface Sci. 170(2), 515–521 (1995)

    ADS  Google Scholar 

  72. J.W. Drelich, Contact angles: from past mistakes to new developments through liquid-solid adhesion measurements. Adv. Coll. Interface. Sci. 267, 1–14 (2019)

    Google Scholar 

  73. L.W. Schwartz, S. Garoff, Contact angle hysteresis on heterogeneous surfaces. Langmuir 1(2), 219–230 (1985)

    Google Scholar 

  74. R.H. Dettre, R.E. Johnson Jr., Contact angle hysteresis: IV—contact angle measurements on heterogeneous surfaces1. J. Phys. Chem. 69(5), 1507–1515 (1965)

    Google Scholar 

  75. J. Drelich, Static contact angles for liquids at heterogeneous rigid solid surfaces. Pol. J. Chem. 71(5), 525–549 (1997)

    Google Scholar 

  76. Q. Liu, J. Yu, H. Wang, The role of the substrate roughness in contact angle hysteresis and dynamic deviation. Int. J. Heat Mass Transf. 148, 118985 (2020)

    Google Scholar 

  77. J.D. Eick, R.J. Good, A.W. Neumann, Thermodynamics of contact angles: II—rough solid surfaces. J. Colloid Interface Sci. 53(2), 235–248 (1975)

    ADS  Google Scholar 

  78. R.H. Dettre, R.E. Johnson Jr., Contact angle hysteresis: II—contact angle measurements on rough surfaces. Adv. Chem. 43, 136–144 (1964)

    Google Scholar 

  79. C.W. Extrand, Model for contact angles and hysteresis on rough and ultraphobic surfaces. Langmuir 18(21), 7991–7999 (2002)

    Google Scholar 

  80. C.W. Extrand, Y. Kumagai, An experimental study of contact angle hysteresis. J. Colloid Interface Sci. 191(2), 378–383 (1997)

    ADS  Google Scholar 

  81. E. Chibowski, On some relations between advancing, receding and Young’s contact angles. Adv. Coll. Interface. Sci. 133(1), 51–59 (2007)

    Google Scholar 

  82. Y.C. Jung, B. Bhushan, Mechanically durable carbon nanotube− composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag. ACS Nano 3(12), 4155–4163 (2009)

    Google Scholar 

  83. Z. Yang, L. Wang, W. Sun, S. Li, T. Zhu, W. Liu et al., Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning. Appl. Surf. Sci. 401, 146–155 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

Asieh Sadat Kazemi would like to acknowledge National Elites Foundation No. 15/10002 in Iran for the financial support they provided toward this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asieh Sadat Kazemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahim Nataj, Z., Kazemi, A.S. & Abdi, Y. Surface effects and wettability measurement considerations in fluorinated carbon nanotubes. Appl. Phys. A 127, 874 (2021). https://doi.org/10.1007/s00339-021-05029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05029-z

Keywords

Navigation