Skip to main content

Advertisement

Log in

Improving efficiency of perovskite solar cell using optimized front surface nanospheres grating

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Perovskite solar cells (PSCs) are introduced to photovoltaic field as a promising alternative to conventional silicon solar cells because of having low fabrication cost, flexible structure and thin thickness, yet with some environmental concerns of having metal cations. In this paper, we discuss the effect of using SiO2 nanospheres front surface grating as one of the light trapping techniques on the performance of the PSC and how this trapping method enhances the power conversion efficiency without further need of increasing perovskite absorber layer thickness. A 3D finite element method solver is employed to simulate the proposed solar cell structure and to obtain its optical and electrical properties, and then, we optimize both of the size and the periodicity of the nanospheres grating. Results show that maximum efficiency of the proposed model of PSC with frontal surface grating is \(26.06\%\), with short circuit current density of \(31.6 mA/{cm}^{2}\), while the efficiency of flat surface PSC is \(21.9\%\), meaning that the power conversion efficiency is improved by \(4.16\%\) in case of surface grated cell. The maximum value of output power observed in grated surface PSC is \(26.058 mW/{cm}^{2}\), about \(4.158 mW/{cm}^{2}\) higher than its value for the flat surface one mentioned in the previously published relevant literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. N. Kannan, D. Vakeesan, Renew. Sustain. Energy Rev. 62, 1092 (2016). https://doi.org/10.1016/j.rser.2016.05.022

    Article  Google Scholar 

  2. B. Parida, S. Iniyan, R. Goic, Renew. Sustain. Energy Rev. 15, 1625 (2011). https://doi.org/10.1016/j.rser.2010.11.032

    Article  Google Scholar 

  3. W.A. Badawy, J. Adv. Res. 6, 123 (2015). https://doi.org/10.1016/j.jare.2013.10.001

    Article  Google Scholar 

  4. S.K.P. Capper (ed.), Springer Handbook of Electronic and Photonic Materials, 2nd edn. (Springer nature, Switzerland, 2017)

    Google Scholar 

  5. K.H. Raut, H.N. Chopde, D.W. Deshmukh, Int. J. Electr. Eng. Ethics 1, 1 (2018)

    Google Scholar 

  6. M. Gul, Y. Kotak, T. Muneer, Energy Explor. Exploit. 34, 485 (2016). https://doi.org/10.1177/0144598716650552

    Article  Google Scholar 

  7. L. Lavagna, G. Syrrokostas, L. Fagiolari, J. Amici, C. Francia, S. Bodoardo, G. Leftheriotis, F. Bella, J. Mater. Chem. A 9, 19687 (2021). https://doi.org/10.1039/D1TA03544D

    Article  Google Scholar 

  8. A.S.A. Almalki, A.G.F. Shoair, A. Badawi, A.M. Al-Baradi, A.A. Atta, S.A. Algarni, M.E. Khalifa, S.Y.M. Alfaifi, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021). https://doi.org/10.1007/s00339-021-04324-z

    Article  Google Scholar 

  9. J.C. De Haro, E. Tatsi, L. Fagiolari, M. Bonomo, C. Barolo, S. Turri, F. Bella, G. Griffini, A.C.S. Sustain, Chem. Eng. 9, 8550 (2021). https://doi.org/10.1021/acssuschemeng.1c01882

    Article  Google Scholar 

  10. T.W. Huang, L.Y. Lin, S.T. Hong, Mater. Sci. Semicond. Process. 136, 106152 (2021). https://doi.org/10.1016/j.mssp.2021.106152

    Article  Google Scholar 

  11. V. Rondán-Gómez, I. Montoya De Los Santos, D. Seuret-Jiménez, F. Ayala-Mató, A. Zamudio-Lara, T. Robles-Bonilla, M. Courel, Appl. Phys. A Mater. Sci. Process. 125, 1 (2019). https://doi.org/10.1007/s00339-019-3116-5

    Article  Google Scholar 

  12. F. Jahantigh, M.J. Safikhani, Appl. Phys. A Mater. Sci. Process. 125, 1 (2019). https://doi.org/10.1007/s00339-019-2582-0

    Article  Google Scholar 

  13. D. Zhang, M. Stojanovic, Y. Ren, Y. Cao, F.T. Eickemeyer, E. Socie, N. Vlachopoulos, J.E. Moser, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Nat. Commun. 12, 2 (2021). https://doi.org/10.1038/s41467-021-21945-3

    Article  Google Scholar 

  14. M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8, 506 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  ADS  Google Scholar 

  15. N.M. Ali, T.A. Ali, N.H. Rafat, Optik (Stuttg). 202, 163645 (2020). https://doi.org/10.1016/j.ijleo.2019.163645

    Article  ADS  Google Scholar 

  16. A.A. Tabrizi, H. Saghaei, M.A. Mehranpour, M. Jahangiri, Plasmonics (2021). https://doi.org/10.1007/s11468-020-01341-1

    Article  Google Scholar 

  17. P.P. Boix, K. Nonomura, N. Mathews, S.G. Mhaisalkar, Mater. Today 17, 16 (2014). https://doi.org/10.1016/j.mattod.2013.12.002

    Article  Google Scholar 

  18. P. Gao, M. Grätzel, M.K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014). https://doi.org/10.1039/C4EE00942H

    Article  Google Scholar 

  19. L.M. Pazos-Outón, M. Szumilo, R. Lamboll, J.M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H.J. Beeson, M. Vrućinić, M. Alsari, H.J. Snaith, B. Ehrler, R.H. Friend, F. Deschler, Science 351, 1430 (2016). https://doi.org/10.1126/science.aaf1168

    Article  ADS  Google Scholar 

  20. I. Hamideddine, H. Zitouni, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021). https://doi.org/10.1007/s00339-021-04600-y

    Article  Google Scholar 

  21. S.K. Sahoo, B. Manoharan, N. Sivakumar, Introduction: Why Perovskite and Perovskite Solar Cells? (Elsevier Inc., Amsterdam, 2018)

    Google Scholar 

  22. A. Chilvery, S. Das, P. Guggilla, C. Brantley, A. Sunda-Meya, Sci. Technol. Adv. Mater. 17, 650 (2016). https://doi.org/10.1080/14686996.2016.1226120

    Article  Google Scholar 

  23. B. Gao, J. Meng, J. Lu, R. Zhao, Mater. Lett. 274, 127995 (2020). https://doi.org/10.1016/j.matlet.2020.127995

    Article  Google Scholar 

  24. I. Montoya De Los Santos, H.J. Cortina-Marrero, M.A. Ruíz-Sánchez, L. Hechavarría-Difur, F.J. Sánchez-Rodríguez, M. Courel, H. Hu, Sol. Energy 199, 198 (2020). https://doi.org/10.1016/j.solener.2020.02.026

    Article  ADS  Google Scholar 

  25. R. Chang, Y. Yan, J. Zhang, Z. Zhu, J. Gu, Thin Solid Films 712, 138279 (2020). https://doi.org/10.1016/j.tsf.2020.138279

    Article  ADS  Google Scholar 

  26. F.S. Ghoreishi, V. Ahmadi, R. Poursalehi, M. SamadPour, M.B. Johansson, G. Boschloo, E.M.J. Johansson, J. Power Sources 473, 228492 (2020). https://doi.org/10.1016/j.jpowsour.2020.228492

    Article  Google Scholar 

  27. P. Zhou, B. Li, Z. Fang, W. Zhou, M. Zhang, W. Hu, T. Chen, Z. Xiao, S. Yang, Sol. RRL 3, 1 (2019). https://doi.org/10.1002/solr.201900164

    Article  Google Scholar 

  28. A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Nat. Mater. 15, 247 (2016). https://doi.org/10.1038/nmat4572

    Article  ADS  Google Scholar 

  29. H. Hu, B. Dong, W. Zhang, J. Mater. Chem. A 5, 11436 (2017). https://doi.org/10.1039/C7TA00269F

    Article  Google Scholar 

  30. B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 6, 1543 (2015). https://doi.org/10.1021/acs.jpclett.5b00504

    Article  Google Scholar 

  31. W.F. Yang, F. Igbari, Y.H. Lou, Z.K. Wang, L.S. Liao, Adv. Energy Mater. 10, 1 (2020). https://doi.org/10.1002/aenm.201902584

    Article  Google Scholar 

  32. M. Wang, W. Wang, B. Ma, W. Shen, L. Liu, K. Cao, S. Chen, W. Huang, Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-020-00578-z

    Article  Google Scholar 

  33. G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, F. Giustino, J. Phys. Chem. Lett. 7, 1254 (2016). https://doi.org/10.1021/acs.jpclett.6b00376

    Article  Google Scholar 

  34. R. Kour, S. Arya, S. Verma, J. Gupta, P. Bandhoria, V. Bharti, R. Datt, V. Gupta, Glob. Challenges 3, 1900050 (2019). https://doi.org/10.1002/gch2.201900050

    Article  Google Scholar 

  35. Q. Zhang, F. Hao, J. Li, Y. Zhou, Y. Wei, H. Lin, Sci. Technol. Adv. Mater. 19, 425 (2018). https://doi.org/10.1080/14686996.2018.1460176

    Article  Google Scholar 

  36. H. Li, Y. Hu, H. Wang, Q. Tao, Y. Zhu, Y. Yang, Sol. RRL 5, 1 (2021). https://doi.org/10.1002/solr.202000524

    Article  Google Scholar 

  37. Z. Chen, Q. Dong, Y. Liu, C. Bao, Y. Fang, Y. Lin, S. Tang, Q. Wang, X. Xiao, Y. Bai, Y. Deng, J. Huang, Nat. Commun. 8, 1 (2017). https://doi.org/10.1038/s41467-017-02039-5

    Article  ADS  Google Scholar 

  38. S.Q. Zhu, T. Zhang, X.L. Guo, F. Shan, X.Y. Zhang, J. Nanomater. (2014). https://doi.org/10.1155/2014/736165

    Article  Google Scholar 

  39. R.E. Nowak, S. Geißendörfer, K. Chakanga, M. Juilfs, N. Reininghaus, M. Vehse, K. Von Maydell, C. Agert, IEEE J. Photovoltaics 5, 479 (2015). https://doi.org/10.1109/JPHOTOV.2014.2388079

    Article  Google Scholar 

  40. F. Qiao, Y. Xie, G. He, H. Chu, W. Liu, Z. Chen, Nanoscale 12, 1269 (2020). https://doi.org/10.1039/C9NR08761C

    Article  Google Scholar 

  41. A.P. Amalathas, M.M. Alkaisi, Micromachines 10, 1 (2019). https://doi.org/10.3390/mi10090619

    Article  Google Scholar 

  42. K. Li, S. Haque, A. Martins, E. Fortunato, R. Martins, M.J. Mendes, C.S. Schuster, Optica 7, 1377 (2020). https://doi.org/10.1364/OPTICA.394885

    Article  ADS  Google Scholar 

  43. Y. Zhan, Y. Wang, Q. Cheng, C. Li, K. Li, H. Li, J. Peng, B. Lu, Y. Wang, Y. Song, L. Jiang, M. Li, Angew. Chemie 131, 16608 (2019). https://doi.org/10.1002/ange.201908743

    Article  ADS  Google Scholar 

  44. G. Faraone, R. Modi, S. Marom, A. Podestà, M. Di Vece, Opt. Mater. (Amst). 75, 204 (2018). https://doi.org/10.1016/j.optmat.2017.10.025

    Article  ADS  Google Scholar 

  45. B. Yousif, M.E.A. Abo-Elsoud, H. Marouf, Plasmonics 15, 1377 (2020). https://doi.org/10.1007/s11468-020-01142-6

    Article  Google Scholar 

  46. R. Irandoost, S. Soleimani-Amiri, Optik (Stuttg). 202, 163598 (2020). https://doi.org/10.1016/j.ijleo.2019.163598

    Article  ADS  Google Scholar 

  47. S. Zhang, F. Yang, M. Liu, W. Liu, Y. Liu, Z. Li, X. Wang, J. Phys. Commun. 2, 55032 (2018). https://doi.org/10.1088/2399-6528/aac41b

    Article  Google Scholar 

  48. A. Tooghi, D. Fathi, M. Eskandari, Sci. Rep. 10, 1 (2020). https://doi.org/10.1038/s41598-020-75630-4

    Article  Google Scholar 

  49. A. Razzaq, V. Depauw, H.S. Radhakrishnan, J. Cho, I. Gordon, J. Szlufcik, Y. Abdulraheem, J. Poortmans, IEEE J. Photovolt. 10, 740 (2020). https://doi.org/10.1109/JPHOTOV.2020.2972324

    Article  Google Scholar 

  50. J. Wu, Sol. Energy 165, 85 (2018). https://doi.org/10.1016/j.solener.2018.03.004

    Article  ADS  Google Scholar 

  51. B. Yousif, M.E.A. Abo-Elsoud, H. Marouf, Opt. Quantum Electron. 51, 1 (2019). https://doi.org/10.1007/s11082-019-1987-5

    Article  Google Scholar 

  52. S. Elewa, B. Yousif, M.E.A. Abo-Elsoud, Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-03007-6

    Article  Google Scholar 

  53. H. Zhang, M. Kramarenko, J. Osmond, J. Toudert, J. Martorell, ACS Photonics 5, 2243 (2018). https://doi.org/10.1021/acsphotonics.8b00099

    Article  Google Scholar 

  54. R. Dewan, S. Shrestha, V. Jovanov, J. Hüpkes, K. Bittkau, D. Knipp, Sol. Energy Mater. Sol. Cells 143, 183 (2015). https://doi.org/10.1016/j.solmat.2015.06.014

    Article  Google Scholar 

  55. M.K. Sahoo, P. Kale, J. Mater. 5, 34 (2019). https://doi.org/10.1016/j.jmat.2018.11.007

    Article  Google Scholar 

  56. X. Yuan, X. Chen, X. Yan, W. Wei, Y. Zhang, X. Zhang, Nanomaterials 10, 1 (2020). https://doi.org/10.3390/nano10061111

    Article  Google Scholar 

  57. J.-H. Im, J. Luo, M. Franckevičius, N. Pellet, P. Gao, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, N.-G. Park, Nano Lett. 15, 2120 (2015). https://doi.org/10.1021/acs.nanolett.5b00046

    Article  ADS  Google Scholar 

  58. V. Consonni, J. Briscoe, E. Kärber, X. Li, T. Cossuet, Nanotechnology 30, 362001 (2019). https://doi.org/10.1088/1361-6528/ab1f2e

    Article  Google Scholar 

  59. W. Liu, H. Ma, A. Walsh, Renew. Sustain. Energy Rev. (2019). https://doi.org/10.1016/j.rser.2019.109436

    Article  Google Scholar 

  60. N.D. Gupta, V. Janyani, IEEE J. Quantum Electron. (2017). https://doi.org/10.1109/JQE.2017.2667638

    Article  Google Scholar 

  61. K. Ishizaki, M. De Zoysa, Y. Tanaka, S.W. Jeon, S. Noda, Jpn. J. Appl. Phys. (2018). https://doi.org/10.7567/JJAP.57.060101

    Article  Google Scholar 

  62. H. Liang, F. Wang, Z. Cheng, C. Xu, G. Li, ES Energy Environ. 1, 29 (2020). https://doi.org/10.30919/esee8c456

    Article  Google Scholar 

  63. G. Perrakis, G. Kakavelakis, G. Kenanakis, C. Petridis, E. Stratakis, M. Kafesaki, E. Kymakis, Opt. Express 27, 31144 (2019). https://doi.org/10.1364/OE.27.031144

    Article  ADS  Google Scholar 

  64. M.J. Mendes, S. Haque, O. Sanchez-Sobrado, A. Araújo, H. Águas, E. Fortunato, R. Martins, IScience 3, 238 (2018). https://doi.org/10.1016/j.isci.2018.04.018

    Article  ADS  Google Scholar 

  65. G. Yin, P. Manley, M. Schmid, Sol. Energy Mater. Sol. Cells 153, 124 (2016). https://doi.org/10.1016/j.solmat.2016.04.012

    Article  Google Scholar 

  66. P. Saxena, N.E. Gorji, IEEE J. Photovoltaics 9, 1693 (2019). https://doi.org/10.1109/JPHOTOV.2019.2940886

    Article  Google Scholar 

  67. S. Zandi, M. Razaghi, Sol. Energy 179, 298 (2019). https://doi.org/10.1016/j.solener.2018.12.032

    Article  ADS  Google Scholar 

  68. T. Minemoto, M. Murata, J. Appl. Phys. (2014). https://doi.org/10.1063/1.4891982

    Article  Google Scholar 

  69. F. Jahantigh, S.M. Bagher Ghorashi, Nano 14, 1 (2019). https://doi.org/10.1142/S1793292019501273

    Article  Google Scholar 

  70. P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.J. Moon, J.H. Yum, M. Topič, S. De Wolf, C. Ballif, J. Phys. Chem. Lett. 6, 66 (2015). https://doi.org/10.1021/jz502471h

    Article  Google Scholar 

  71. E. Raoult, R. Bodeux, S. Jutteau, S. Rives, Eur. Photovolt. Sol. Energy Conf. Exhib. (EU PVSEC) 36, 757 (2019). https://doi.org/10.4229/EUPVSEC20192019-3BV.2.53

    Article  Google Scholar 

  72. L. Huaxu, W. Fuqiang, C. Ziming, S. Xuhang, H. Han, Optik (Stuttg). 223, 165624 (2020). https://doi.org/10.1016/j.ijleo.2020.165624

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shorok Elewa.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elewa, S., Yousif, B. & Abo-Elsoud, M.E.A. Improving efficiency of perovskite solar cell using optimized front surface nanospheres grating. Appl. Phys. A 127, 854 (2021). https://doi.org/10.1007/s00339-021-05019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05019-1

Keywords

Navigation