Skip to main content
Log in

Reactive molecular dynamics simulation of thermal decomposition for nano-FOX-7

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

1,1-Diamino-2,2-dinitroethylene (FOX-7) is well-known as one high-energy insensitive material. The size effect of the nano-crystal on the pyrolysis are extremely important for ignition and reaction pathways under extreme conditions. The thermal decomposition of nano-FOX-7 was investigated utilizing molecular dynamics method with reactive force field. The pyrolysis simulation showed that the potential barrier of nano-FOX-7 at 3000 K are higher than that at 2000 K. The temperature distribution of nano-FOX-7 in the temperature-rise periods shows that the decomposition occurs first at the central part of the crystal. Based on the analysis of chemical species, three types of initial reaction pathways were identified, among which the fission of the C–NH2 bond may be a new reaction pathway. A decomposition network from initial reactant to the main products was proposed to provide insights into the decomposition mechanism on atomic level. The mass distribution of products showed that the clusters among the decomposition products can inhibit the violent reaction to a certain extent. In addition, the analysis of the nano-crystal effect on the FOX-7 decay shows that the numbers of N2 and CO2 are related to the nanoparticle size.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Bu, H. Li, C. Zhang, Polymorphic transition in traditional energetic materials: influencing factors and effects on structure, property and performance. Cryst. Growth Des. 20, 3561–3576 (2020)

    Article  Google Scholar 

  2. R. Bu, W. Xie, C. Zhang, Heat-induced polymorphic transformation facilitating the low impact sensitivity of 2,2-dinitroethylene-1,1-diamine (FOX-7). J. Phys. Chem. C 123, 16014–16022 (2019)

    Article  Google Scholar 

  3. V.W. Manner, M. Cawkwell, E.M. Kober et al., Examining the chemical and structural properties that influence the sensitivity of energetic nitrate esters. Chem. Sci. 9, 3649–3663 (2018)

    Article  Google Scholar 

  4. H.Y. Lee, M.J. Kim, W. Bokjeong et al., Habit modification of 1,1-diamino-2,2-dinitroethylene (DADNE) by crystallization. Sci. Technol. Energ. Mater. 73, 59–62 (2012)

    Google Scholar 

  5. H.M. Shim, H.S. Kim, K.K. Koo, Molecular modeling on supersaturation-dependent growth habit of 1,1-diamino-2,2-dinitroethylene. Cryst. Growth Des. 15, 1833–1842 (2015)

    Article  Google Scholar 

  6. W. Zhang, L. Bao, K. Jiang et al., Identification and formation mechanism of the transient ion fragments produced in laser-induced dissociation of 1,1-diamino-2,2-dinitroethylene. Laser Part Beams 36, 308–312 (2018)

    Article  ADS  Google Scholar 

  7. V.I. Pepekin, B.L. Korsunskii, A.A. Denisaev, Induction of the explosion of solid explosives under mechanical action. Fiz. Goreniya Vzryva 44, 101–105 (2008)

    Google Scholar 

  8. W.A. Trzcinski, Z. Chylek, S. Cudzilo et al., Investigation of detonation characteristics and sensitivity of FOX-7-based phlegmatized explosives. Biul. Wojsk. Akad. Tech. 57, 7–25 (2008)

    Google Scholar 

  9. X. Li, X. Zhang, W. Yang et al., Design and characterization of a cook-off resistant high-energy booster explosive based on CL-20/FOX-7. Propellant Explos. Pyrotech. 44, 550–556 (2019)

    Article  Google Scholar 

  10. M.K. Shukla, J. Wang, J. Seiter et al., Understanding the fate of insensitive munitions compounds: computational study on adsorption of nitroguanidine (NQ) and 1,1-diamino-2,2-dinitroethylene (FOX7) on pristine and Al-hydroxylated α-alumina surfaces. J. Phys. Chem. C 121, 11560–11567 (2017)

    Article  Google Scholar 

  11. N.V. Latypov, J. Bergman, A. Langlet et al., Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene. Tetrahedron 54, 11525–11536 (1998)

    Article  Google Scholar 

  12. F.J. Zerilli, M.M. Kuklja, First principles calculation of the mechanical compression of two organic molecular crystals. J. Phys. Chem. A 110, 5173–5179 (2006)

    Article  Google Scholar 

  13. K. Wang, J.-G. Chen, Z.-B. Nie et al., Impact of the acidic group on the hydrolysis of 2-dinitromethylene-5,5-dinitropyrimidine-4,6-dione. RSC Adv. 8, 13301–13309 (2018)

    Article  ADS  Google Scholar 

  14. A. Saikia, R. Sivabalan, G.M. Gore et al., Synthesis of some potential high energy materials using metal nitrates; an approach towards environmental benign process. J. Sci. Ind. Res. India 73, 485–488 (2014)

    Google Scholar 

  15. L. Liu, H. Li, D. Chen et al., Solubility of 1,1-diamino-2,2-dinitroethylene in different pure solvents and binary mixtures (dimethyl sulfoxide + water) and (N,N-dimethylformamide + water) at different temperatures. Fluid Phase Equilib. 460, 95–104 (2017)

    Article  Google Scholar 

  16. T. Li, R. Li, F. Nie et al., Facile preparation of self-sensitized FOX-7 with uniform pores by heat treatment. Propellant Explos. Pyrotech. 39, 260–266 (2014)

    Article  Google Scholar 

  17. H.-X. Gao, F.-Q. Zhao, R.-Z. Hu et al., Thermochemical properties, thermal behavior and decomposition mechanism of 1,1-diamino-2,2-dinitroethylene (DADE). Chin. J. Chem. 24, 177–181 (2006)

    Article  Google Scholar 

  18. Y. Liu, F. Li, H. Sun, Thermal decomposition of FOX-7 studied by ab initio molecular dynamics simulations. Theor. Chem. Acc. 133, 165–175 (2015)

    Google Scholar 

  19. R. Xu, C. An, H. Huang et al., Preparation of multi-scale FOX-7 particles and investigation of sensitivity and thermal stability. RSC Adv. 9, 21042–21049 (2019)

    Article  ADS  Google Scholar 

  20. L. Jiang, X. Fu, Z. Zhou et al., Study of the thermal decomposition mechanism of FOX-7 by molecular dynamics simulation and online photoionization mass spectrometry. RSC Adv. 10, 21147–21157 (2020)

    Article  ADS  Google Scholar 

  21. T. Vladimiroff, B.M. Rice, Reinvestigation of the gas-phase structure of RDX using density functional theory predictions of electron-scattering intensities. J. Phys. Chem. A 106, 10437–10443 (2002)

    Article  Google Scholar 

  22. B.M. Rice, C.F. Chabalowski, Ab initio and nonlocal density functional study of 1,3,5-trinitro-s-triazine (RDX) conformers. J. Phys. Chem. A 101, 8720–8726 (1998)

    Article  Google Scholar 

  23. L. Patidar, S.T. Thynell, Quantum mechanics investigation of initial reaction pathways and early ring-opening reactions in thermal decomposition of liquid-phase RDX. Combust. Flame 178, 7–20 (2017)

    Article  Google Scholar 

  24. K. Chenoweth, A.C.T.V. Duin, P. Persson et al., Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts. J. Phys. Chem. A 112, 14645–14654 (2008)

    Article  Google Scholar 

  25. S.C. Chowdhury, J.W. Gillespie, Silica–silane coupling agent interphase properties using molecular dynamics simulations. J. Mater. Sci. 52, 12981–12998 (2017)

    Article  ADS  Google Scholar 

  26. Y. Sun, Q. Wang, Y. Wu et al., Numerical simulation of the combustion of nano-aluminum in carbon dioxide. Acta Astronaut. 139, 428–434 (2017)

    Article  ADS  Google Scholar 

  27. Y. Yang, S.A. Peddakotla, R. Kumar et al., Effect of argon gas in oxygen catalytic recombination on a silica surface: a reactive molecular dynamics study. Acta Astronaut. 175, 5–6 (2020)

    Article  Google Scholar 

  28. N.N. Smirnov, V.B. Betelin, V.F. Nikitin, L.I. Stamov et al., Accumulation of errors in numerical simulations of chemically reacting gas dynamics. Acta Astronaut. 117, 338–355 (2015)

    Article  ADS  Google Scholar 

  29. K. Zheng, Y. Wen, B. Huang et al., The solid phase thermal decomposition and nanocrystal effect of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) via ReaxFF large-scale molecular dynamics simulation. Phys. Chem. Chem. Phys. 21, 17240–17252 (2019)

    Article  Google Scholar 

  30. T. Zhou, J. Lou, Y. Zhang et al., Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study. Phys. Chem. Chem. Phys. 18, 17627–17645 (2016)

    Article  Google Scholar 

  31. J. Li, S. Jin, G. Lan et al., Reactive molecular dynamics simulations on the thermal decompositions and oxidations of TKX-50 and twinned TKX-50. CrystEngComm 22, 2593–2600 (2020)

    Article  Google Scholar 

  32. L. Liu, Y. Liu, S.V. Zybin et al., ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. J. Phys. Chem. A 115, 11016–11022 (2011)

    Article  Google Scholar 

  33. J.F. Moxnes, T.L. Jensen, E. Unneberg, Study of thermal instability of HMX crystalline polymorphs with and without molecular vacancies using reactive force field molecular dynamics. Adv. Stud. Theor. Phys. 10, 331–349 (2016)

    Article  Google Scholar 

  34. Y. Wen, X. Xue, X. Long et al., Cluster evolution at early stages of 1,3,5-triamino-2,4,6-trinitrobenzene under various heating conditions: a molecular reactive force field study. J. Phys. Chem. A 120, 3929–3937 (2016)

    Article  Google Scholar 

  35. X. Xue, Y. Wen, X. Long et al., Influence of dislocations on the shock sensitivity of RDX: molecular dynamics simulations by reactive force field. J. Phys. Chem. C 119, 13735–13742 (2015)

    Article  Google Scholar 

  36. L. Chen, H. Wang, F. Wang et al., Thermal decomposition mechanism of 2,2′,4,4′,6,6′-hexanitrostilbene by ReaxFF reactive molecular dynamics simulations. J. Phys. Chem. C 122, 19309–19318 (2018)

    Article  Google Scholar 

  37. B.M. Rice, J.P. Larentzos, E.F.C. Byrd et al., Parameterizing complex reactive force fields using multiple objective evolutionary strategies (MOES): part 2: transferability of ReaxFF models to C–H–N–O energetic materials. J. Chem. Theory Comput. 11, 392–405 (2015)

    Article  Google Scholar 

  38. U. Bemm, H. Östmark, 1,1-diamino-2,2-dinitroethylene: a novel energetic material with infinite layers in two dimensions. Acta Crystallogr. C 54, 1997–1999 (1998)

    Article  Google Scholar 

  39. Z. Mei, C.F. Li, F.Q. Zhao et al., Reactive molecular dynamics simulation of thermal decomposition for nano-AlH3/TNT and nano-AlH3/CL-20 composites. J. Mater. Sci. 54, 7016–7027 (2019)

    Article  ADS  Google Scholar 

  40. L. Song, F.-Q. Zhao, S.-Y. Xu et al., Reactive molecular dynamics simulation of the high-temperature pyrolysis of 2,2′,2′′,4,4′,4′′,6,6′,6′′-nonanitro-1,1′:3′,1′′-terphenyl (NONA). RSC Adv. 10, 5507–5515 (2020)

    Article  ADS  Google Scholar 

  41. Z. Ke, W. Yushi, H. Bing et al., The solid phase thermal decomposition and nanocrystal effect of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) via ReaxFF large-scale molecular dynamics simulation. Phys. Chem. Chem. Phys. 21, 17240–17252 (2019)

    Article  Google Scholar 

  42. F. Wang, L. Chen, D. Geng et al., Effect of density on the thermal decomposition mechanism of epsilon-CL-20: a ReaxFF reactive molecular dynamics simulation study. Phys. Chem. Chem. Phys. 20, 22600–22609 (2018)

    Article  Google Scholar 

  43. F. Wang, L. Chen, D. Geng et al., Thermal decomposition mechanism of CL-20 at different temperatures by ReaxFF reactive molecular dynamics simulations. J. Phys. Chem. A 122, 3971–3979 (2018)

    Article  Google Scholar 

  44. C. Deng, X. Xue, Y. Chi et al., Nature of the enhanced self-heating ability of imperfect energetic crystals relative to perfect ones. J. Phys. Chem. C 121, 12101–12109 (2017)

    Article  Google Scholar 

  45. L. Yang, J. Wu, D. Geng et al., Reactive molecular dynamics simulation of the thermal decomposition mechanisms of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo[5.5.0.05,9.03,11]dodecane’(TEX). Combust. Flame 202, 303–317 (2019)

    Article  Google Scholar 

  46. Y. Wen, X. Xue, X. Long, C. Zhang, Cluster evolution at early stages of 1,3,5-triamino-2,4,6-trinitrobenzene under various heating conditions: a molecular reactive force field study. J. Phys. Chem. A 120, 3929–3937 (2016)

    Article  Google Scholar 

  47. A. Strachan, E.M. Kober, A.C. van Duin, Thermal decomposition of RDX from reactive molecular dynamics. J. Chem. Phys. 122, 54502 (2005)

    Article  Google Scholar 

  48. R. Cohen, Y. Zeiri, E. Wurzberg et al., Mechanism of thermal unimolecular decomposition of TNT (2,4,6-trinitrotoluene): a DFT study. J. Phys. Chem. A 111, 11074–11083 (2007)

    Article  Google Scholar 

  49. M.T. Nguyen, H.T. Le, B. Hajgató et al., Nitromethane-methyl nitrite rearrangement: a persistent discrepancy between theory and experiment. J. Phys. Chem. A 93, 4286–4291 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Chen.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2057 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, C., Jin, S., Chen, S. et al. Reactive molecular dynamics simulation of thermal decomposition for nano-FOX-7. Appl. Phys. A 127, 881 (2021). https://doi.org/10.1007/s00339-021-05018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05018-2

Keywords

Navigation