Skip to main content
Log in

Electrochemical performance of CuCo2O4/CuS nanocomposite as a novel electrode material for supercapacitor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

(1−x) CuCo2O4-xCuS (x = 0, 0.1, 0.25, 0.5) nanocomposite samples were prepared using hydrothermal and thermolysis procedures. The crystal structure and the percentages of phases formed in the nanocomposite samples were studied employing Fullprof software. X-ray photoelectron spectroscopy (XPS) was carried out to identify the different ions present in samples and their oxidation states. The specific capacitance is remarkably enhanced after adding CuS emphasizing the synergistic effect between CuCo2O4 and CuS. The optimum performance of 735 Fg−1 was achieved for 25% CuS. At a higher amount of CuS, the electrochemical activities become less compared with a low CuS amount. The supercapacitor electrode of 0.75CuCo2O4/0.25CuS exhibited high stability with a longer discharging time compared with pristine CuCo2O4 and CuS. Also, it maintained 88.9% of its initial Cs and consequently, this material can work as an excellent supercapacitor electrode. Electrochemical impedance spectroscopy (EIS) analysis was also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.-Q. Zhao, Y. Zhang, K.-Z. Xu, Int. J. Electrochem. Sci. 14, 3885 (2019)

    Article  Google Scholar 

  2. N.M. Farag, M.A. Deyab, A.M. El-naggar, A.M. Aldhafiri, M.B. Mohamed, Z.K. Heiba, J. Mater. Res. Technol. 10, 1415 (2021)

    Article  Google Scholar 

  3. J. Cheng, H. Yan, Y. Lu, K. Qiu, X. Hou, J. Mater. Chem. A 3, 9769 (2015)

    Article  Google Scholar 

  4. N. Kimizuka, T. Mohri, J. Solid State Chem. 60, 382 (1985)

    Article  ADS  Google Scholar 

  5. M.-J. Deng, F.-L. Huang, I.-W. Sun, W.-T. Tsai, J.-K. Chang, Nanotechnology 20, 175602 (2009)

    Article  ADS  Google Scholar 

  6. B.S. Singu, R. Kuchi, P.C. Van, D. Kim, K.R. Yoon, J.R. Jeong, Chemnanomat 5(11), 1398 (2019)

    Article  Google Scholar 

  7. L. Merabet, K. Rida, N. Boukmouche, Ceram. Int. 44, 11265 (2018)

    Article  Google Scholar 

  8. M. Lan, B. Liu, R. Zhao, M. Dong, X. Wang, L. Fang, L. Wang, J. Colloid Interf. Sci. 566, 79 (2020)

    Article  ADS  Google Scholar 

  9. M. Silambarasan, N. Padmanathan, P.S. Ramesh, D. Geetha, Mater. Res. Express 3, 095021 (2016)

    Article  ADS  Google Scholar 

  10. R. BoopathiRaja, M. Parthibavarman, A. Begum, Vacuum 165, 96 (2019)

    Article  ADS  Google Scholar 

  11. S. Vijayakumar, S.-H. Lee, K.-S. Ryu, Electrochim. Acta 182, 979 (2015)

    Article  Google Scholar 

  12. L. Abbasi, M. Arvand, Appl. Surf. Sci. 445, 272 (2018)

    Article  ADS  Google Scholar 

  13. Y. Wang, C. Shen, L. Niu, R. Li, H. Guo, Y. Shi, C. Li, X. Liu, Y. Gong, J. Mater. Chem. A 4, 9977 (2016)

    Article  Google Scholar 

  14. Q. Wang, J. Xu, X. Wang, B. Liu, X. Hou, G. Yu, P. Wang, D. Chen, G. Shen, Chemelectrochem 1(3), 559 (2014)

    Article  Google Scholar 

  15. K. Xu, S. Ma, Y. Shen, Q. Ren, J. Yang, X. Chen, J. Hu, Chem. Eng. J. 369, 363 (2019)

    Article  Google Scholar 

  16. S. Wen, Y. Liu, H. Bai, R. Shao, W. Xu, W. Shi, J. Solid State Chem. 362, 327 (2018)

    Article  ADS  Google Scholar 

  17. S. Chen, S. Cui, S. Chandrasekaran, C. Ke, Z. Li, P. Chen, C. Zhang, Y. Jiang, Electrochim. Acta 341, 135893 (2020)

    Article  Google Scholar 

  18. Z.K. Heiba, M.B. Mohamed, M. Abdellatief, A.A. Albassam, Appl. Phys. A 126(7), 1 (2020)

    Article  Google Scholar 

  19. Y. Tian, Z. Su, Z. Zhao, B. Cong, M. Wang, Mater. Lett. 264, 127400 (2020)

    Article  Google Scholar 

  20. H.B. Wu, H. Pang, X.W. Lou, Energy Environ. Sci. 6, 3619 (2013)

    Article  Google Scholar 

  21. J. Rodríguez-Carvajal, Phys. B (Amster-dam, Neth.) 192, 55 (1993)

    Article  ADS  Google Scholar 

  22. M.A. Deyab, Electrochim. Acta 244, 178 (2017)

    Article  Google Scholar 

  23. B.J. Tan, K.J. Klabunde, P.M.A. Sherwood, J. Am. Chem. Soc. 113, 855 (1991)

    Article  Google Scholar 

  24. Q. Li, X. Wang, K. Tang, M. Wang, C. Wang, C. Yan, ACS Nano 11, 12230 (2017)

    Article  Google Scholar 

  25. M.D. Koninck, S.-C. Poirier, B. Marsan, J. Electrochem. Soc. 153(11), A2103 (2006)

    Article  Google Scholar 

  26. C. Zhang, A. Xie, W. Zhang, J. Chang, C. Liu, L. Gu, X. Duo, F. Pan, S. Luo, J. Energy Storage 34, 102181 (2021)

    Article  Google Scholar 

  27. D.W. Wang, Q.H. Wang, T.M. Wang, Inorg. Chem. 50, 6482 (2011)

    Article  Google Scholar 

  28. A.C. Tavares, M.A.M. Cartaxo, M.I.D. Pereira, F.M. Costa, J. Electroanal. Chem. 464, 187 (1999)

    Article  Google Scholar 

  29. N. Fradette, B. Marsan, J. Electrochem. Soc. 145, 2320 (1998)

    Article  ADS  Google Scholar 

  30. A.C. Tavares, M.I.D. Pereira, M.H. Mendocüa, M.R. Nunes, F.M. Costa, C.M. Sa, J. Electroanal. Chem. 449, 91 (1998)

    Article  Google Scholar 

  31. G.H. Li, L.Z. Dai, D.S. Lu, S.Y. Peng, J. Solid State. Chem. 89, 167 (1990)

    Article  ADS  Google Scholar 

  32. M.A. Deyab, T. Stankulov, E. Slavcheva, A.E. Awadallah, S.M. ElSaeed, E.G. Zaki, J. Mol. Liq. 314, 113693 (2020)

    Article  Google Scholar 

  33. B. Senthilkumar, R.K. Selvan, J. Colloid Interface Sci. 426, 280 (2014)

    Article  ADS  Google Scholar 

  34. X. Zhang, Y. Xie, Chem. Soc. Rev. 42, 8187 (2013)

    Article  ADS  Google Scholar 

  35. J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, Y. Xie, J. Am. Chem. Soc. 133, 17832 (2011)

    Article  Google Scholar 

  36. J. Xie, X. Sun, N. Zhang, K. Xu, M. Zhou, Y. Xie, Nano Energy 2, 65 (2013)

    Article  ADS  Google Scholar 

  37. N. Ding, N. Yan, C. Ren, X. Chen, Anal. Chem. 82, 5897 (2010)

    Article  Google Scholar 

  38. M. Gao, Y. Xu, J. Jiang, S. Yu, Chem. Soc. Rev. 42, 2986 (2013)

    Article  Google Scholar 

  39. W. Du, X. Qian, X. Ma, Q. Gong, H. Cao, Chem. Eur. J. 13, 3241 (2007)

    Article  Google Scholar 

  40. Z. Pan, F. Cao, X. Hua, X. Ji, J. Mater. Chem. A 7, 8984 (2019)

    Article  Google Scholar 

  41. Y. Shabangoli, M.S. Rahmanifar, M.F. El-Kady, A. Noori, M.F. Mousavi, R.B. Kaner, Energy Storage Mater. 11, 282 (2018)

    Article  Google Scholar 

  42. M.A. Deyab, G. Mele, J. Energy Storage 26, 101013 (2019)

    Article  Google Scholar 

  43. C. Liu, X. Wu, Mater. Res. Bull. 103, 55 (2018)

    Article  Google Scholar 

  44. Z. Wang, W. Jia, M. Jiang, C. Chen, Y. Li, Nano Res. 9, 2026 (2016)

    Article  Google Scholar 

  45. M.M. Vadiyar, S.S. Kolekar, J.-Y. Chang, A.A. Kashale, A.V. Ghule, Electrochim. Acta 222, 1604 (2016)

    Article  Google Scholar 

  46. X. Zhang, W. Shi, J. Zhu, D.J. Kharistal, W. Zhao, B.S. Lalia, H.H. Hng, Q. Yan, ACS Nano 5, 2013 (2011)

    Article  Google Scholar 

  47. M.A. Deyab, A.A. Nada, A. Hamdy, Prog. Org. Coat. 105, 245 (2017)

    Article  Google Scholar 

  48. M.A. Deyab, J. Power Sour. 390, 176 (2018)

    Article  ADS  Google Scholar 

  49. H. Chen, Y. Kang, F. Cai, S. Zeng, W. Li, M. Chen, Q. Li, J. Mater. Chem. A 3, 1875 (2015)

    Article  Google Scholar 

  50. A. Shanmugavani, R.K. Selvan, Electrochim. Acta 188, 852 (2016)

    Article  Google Scholar 

  51. M. Kuang, X.Y. Liu, F. Dong, Y.X. Zhang, J. Mater. Chem. A 3, 21528 (2015)

    Article  Google Scholar 

  52. M. Pang, S. Jiang, J. Zhao, S. Zhang, R. Liu, W. Qu, Q. Pan, B. Xing, L. Gu, H. Wang, New J. Chem. 42, 19153 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by Researchers Supporting Project number (RSP-2021/72), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Bakr Mohamed or A. M. El-naggar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Deyab, M.A., Mohamed, M.B. et al. Electrochemical performance of CuCo2O4/CuS nanocomposite as a novel electrode material for supercapacitor. Appl. Phys. A 127, 853 (2021). https://doi.org/10.1007/s00339-021-05012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05012-8

Keywords

Navigation