Skip to main content
Log in

Comparative study by DFT method of structural, electronic and optical properties of monolayer, bilayer and bulk CdS

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we studied structural, electronic and optical properties of binary compound CdS in bulk, bilayer and monolayer forms using density functional theory method with full potential integrated in Wien2k code. In our calculations, we have used the PBEsol approximation for the structural properties and the TB-mBJ approximation for the electronic and the optical properties. The equilibrium lattice constants and the band gap energy obtained with monolayer and bilayer are higher than those of bulk wurtzite, while the bond length between Cd and S atoms is reduced. The bond length contraction is due to the effect of sp2 hybridization in 2D graphene-like structure, which is stronger than the effect of sp3 hybridization in bulk wurtzite. The increase in band gap energy can be explained by quantum confinement effects associated with the size reduction of CdS structure. For optical properties, we found that CdS monolayer and bilayer have low absorption and high transparency than the bulk in visible range, which is also explained by quantum confinement effects. According to these obtained properties, CdS graphene-like can be one of the promising nanomaterials for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Yu, W. Guo, J. Phys. Chem. Lett. 4, 1856 (2013)

    Google Scholar 

  2. F. Wu, F. Qu, A.H. MacDonald, Phys. Rev. B 91, 075310 (2015)

    ADS  Google Scholar 

  3. M. Kan, J.Y. Wang, X.W. Li, S.H. Zhang, Y.W. Li, Y. Kawazoe, Q. Sun, P. Jena, J. Phys. Chem. C 118, 1515–1522 (2014)

    Google Scholar 

  4. C. Tusche, H.L. Meyerheim, J. Kirschner, Phys. Rev. Lett. 99, 026102 (2007)

    ADS  Google Scholar 

  5. A. Fathalian, J. Jalilian, Phys. Lett. A 374, 4695–4699 (2010)

    ADS  Google Scholar 

  6. H. Behera, G. Mukhopadhyay, Phys. Lett. A 376, 3287–3289 (2012)

    ADS  Google Scholar 

  7. H. Jeong et al., ACS Nano 9, 10032–10038 (2015)

    Google Scholar 

  8. J. Jalilian, M. Safari, Diam. Relat. Mater. 66, 163–170 (2016)

    ADS  Google Scholar 

  9. M. Neek-Amal, J. Beheshtian, A. Sadeghi, K.H. Michel, F.M. Peeters, J. Phys. Chem. C 117, 13261–13267 (2013)

    Google Scholar 

  10. H.S. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Phys. Rev. B 80, 155453 (2009)

    ADS  Google Scholar 

  11. H. Zheng, X.B. Li, N.K. Chen, Sh.Y. Xie, W.Q. Tian, Y. Chen, H. Xia, S.B. Zhang, H.B. Sun, Phys. Rev. B 92, 115307 (2015)

    ADS  Google Scholar 

  12. T.Y. Zhai, Z.J. Gu, H.Z. Zhong, Y. Dong, Y. Ma, H.B. Fu, Y.F. Li, J.N. Yao, Cryst. Growth Des. 7, 488 (2007)

    Google Scholar 

  13. Y.F. Lin, J. Song, Y. Ding, S.Y. Lu, Z.L. Wang, Adv. Mater. 20, 3127 (2008)

    Google Scholar 

  14. Y.F. Lin, J. Song, Y. Ding, S.Y. Lu, Z.L. Wang, Appl. Phys. Lett. 92, 022105 (2008)

    ADS  Google Scholar 

  15. I. Popov, G. Seifert, D. Tománek, Phys. Rev. Lett. 108, 156802 (2012)

    ADS  Google Scholar 

  16. K. Zhang, L. Guo, Catal. Sci. Technol. 3, 1672–1690 (2013)

    Google Scholar 

  17. C.N.R. Rao, K. Gopalakrishnan, U. Maitra, ACS Appl. Mater. Interfaces 7, 7809–7832 (2015)

    Google Scholar 

  18. Z. Khan, T.R. Chetia, A.K. Vardhaman, D. Barpuzary, C.V. Sastri, M. Qureshi, RSC. Adv. 2, 12122–12128 (2012)

    ADS  Google Scholar 

  19. D. Jing, L. Guo, J. Phys. Chem. B 110(23), 11139–11145 (2006)

    Google Scholar 

  20. L. Yadava, R. Verma, R. Dwivedi, Sensor Actuators B Chem 144(1), 37–42 (2010)

    Google Scholar 

  21. A.A. Hendi, J. Nanoelectron. Optoelectron. 9, 596–600 (2014)

    Google Scholar 

  22. D. Jing, L. Guo, J. Phys. Chem. B 110(23), 11139–11145 (2006)

    Google Scholar 

  23. Y. Xu, W. Zhao, R. Xu, Y. Shi, B. Zhang, Chem. Commun. 49, 9803 (2013)

    Google Scholar 

  24. P. Garg, S. Kumar, I. Choudhuri, A. Mahata, B. Pathak, J. Phys. Chem. 120(13), 7052 (2016)

    Google Scholar 

  25. J.C. Lee, W. Lee, S.W. Han, T.G. Kim, Y.M. Sung, Electrochem. Commun. 11(1), 231–234 (2009)

    Google Scholar 

  26. W. Na, S. Liu, X. Liu, X. Su, Talanta 144, 1059–1064 (2015)

    Google Scholar 

  27. Z. Yu, B. Yin, F. Qu, X. Wu, Chem. Eng. J. 258, 203–209 (2014)

    Google Scholar 

  28. A. Gichuhi, B.E. Boone, C. Shannon, J. Electroanal. Chem. 522, 21 (2002)

    Google Scholar 

  29. U. Demir, C. Shannon, Langmuir 10, 2794 (1994)

    Google Scholar 

  30. M.A. Mahdi, J.J. Hassan, S.S. Ng, Z. Hassan, N.M. Ahmed, Phys E 44, 1716 (2012)

    Google Scholar 

  31. T. Gao, T. Wang, Cryst. Growth Des. 10, 11 (2010)

    Google Scholar 

  32. P. Garg, S. Kumar, I. Choudhuri, A. Mahata, B. Pathak, J. Phys. Chem. 120(13), 7052 (2016)

    Google Scholar 

  33. L. Chen, Y. Cui, Z. Xiong, M. Zhouc, Y. Gao, RSC Adv 9, 21831 (2019)

    ADS  Google Scholar 

  34. J.M. Azpiroz, E. Mosconi, F.D. Angelis, J. Phys. Chem. C 115(51), 25219 (2011)

    Google Scholar 

  35. D.K. Sang, B. Wen, S. Gao, Y. Zeng, F. Meng, Z. Guo, H. Zhang, Nanomaterials 9, 1075 (2019)

    Google Scholar 

  36. KS PB, Madsen GK, Kvasnicka D, Luitz J, An Augmented Plane Wave Plus Local Orbital, Program for Calculating Crystal Properties. Vienna, AUSTRIA, Vienna University of Technology (2001). http://www.wien2k.at

  37. M. Sharma, A. Kumar, P.K. Ahluwalia, R. Pandey, J. Appl. Phys. 116, 63771 (2014)

    Google Scholar 

  38. C. Tusche, H.L. Meyerheim, J. Kirschner, Phys. Rev. Lett. 99, 026102 (2007)

    ADS  Google Scholar 

  39. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    ADS  MathSciNet  Google Scholar 

  40. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke. Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/physrevlett.100.136406

    ADS  Google Scholar 

  41. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  42. G. Baym, L.P. Kadanoff, Phys. Rev. 124, 287–299 (1961)

    ADS  MathSciNet  Google Scholar 

  43. J. Uddin, G.E. Scuseria, Phys. Rev. B 74, 245115 (2006)

    ADS  Google Scholar 

  44. J. Sun, H. Wang, J. He, Y. Tian, Phys. Rev. B 71, 123132 (2005)

    Google Scholar 

  45. F. Wooten, Optical Properties of Solids (Academic, New York, 1972)

    Google Scholar 

  46. F. Tran, P. Blaha, J. Phys. Chem. A 121, 3318–3325 (2017)

    Google Scholar 

  47. I. Bziz, E.H. Atmani, N. Fazouan, M. Aazi, Surf. Interfac 24, 101126 (2021)

    Google Scholar 

  48. M. Aazi, E.H. Atmani, N. Fazouan, I. Bziz, A. Es-smairi, In IEEE Xplore 2020, 7th International Renewable and Sustainable Energy Conference (IRSEC). Doi: https://doi.org/10.1109/IRSEC48032. P. 9078305 2019

  49. M. Khuili, N. Fazouan, Abou El Makarim, E.H. Atmani, D.P. Rai, M. Houmad, Vacuum. 181, 109603 (2020)

  50. M. Khuili, G. El Hallani, N. Fazouan, H. Abou El Makarim, E.H. Atmani, Comput. Condens. Matter 21, e00426 (2019). https://doi.org/10.1016/j.cocom.2019.e00426

    Article  Google Scholar 

  51. A. Es-Smairi, N. Fazouan, H. Joshi, E.H. Atmani, J. Phys. Chem. Solids 160, 110305 (2022)

    Google Scholar 

  52. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    ADS  Google Scholar 

  53. C. Zhang, S. Yan, P. Wang, P. Li, F. Zheng, J. Appl. Phys. 109, 094304 (2011)

    ADS  Google Scholar 

  54. A. Nabi, Comput. Mater. Sci. 112, 210 (2016)

    Google Scholar 

  55. A. Kuc, N. Zibouche, T. Heine, Phys. Rev. B 83(24), 245213 (2011)

    ADS  Google Scholar 

  56. K. Choudhary, F. Tavazza, Phys. Rev. Mater. 5, 054602 (2021)

    Google Scholar 

  57. I.A. Rahman, A. Purqon, J. Phys. Conf. Ser. 877, 012026 (2017)

    Google Scholar 

  58. A. Es-Smairi, N. Fazouan, E.H. Atmani, M. Khuili, E. Maskar, Appl. Phys. A Mater. Sci. Process. 127(9), 698 (2021)

    ADS  Google Scholar 

  59. A. Es-Smairi, N. Fazouan, E.H. Atmani, Mater. Res. Express 6, 125047 (2019). https://doi.org/10.1088/2053-1591/ab56fa

    Article  ADS  Google Scholar 

  60. M. Khuili, N. Fazouan, H. Abou El Makarim, E.H. Atmani, M. Houmad, Mater. Res. Express 7, 025043 (2020)

    ADS  Google Scholar 

  61. M. Naseri, A. Bafekry, M. Faraji, M.D. Hoat, M. Fadlallah, M. M. Ghergherehchi, D. Gogova. Chem. Chem. Phys. 23(21), 12226 (2021). https://doi.org/10.1039/D1CP00317H

    Google Scholar 

  62. A. Bafekry, M. Faraji, M. M. Fadlallah, H. R. Jappor, N. N. Hieu, M. Ghergherehchi, S. A. H. Feghhi, D. Gogova. J Phys D: Appl. Phys. 54, 395103 (2021). https://doi.org/10.1088/1361-6463/ac118c

    Google Scholar 

  63. A. Bafekry, C. Stampfl, M. Faraji, M. Yagmurcukardes, M.M. Fadlallah, H.R. Jappor, M. Ghergherehchi, S.A.H. Feghhi, Appl. Phys. Lett. 118, 203103 (2021)

    ADS  Google Scholar 

  64. A. Bafekry, B. Mortazavi, M. Faraji, M. Shahrokhi, A. Shafique, H.R. Jappor, C. Nguyen, M. Ghergherehchi, S.A.H. Feghhi, Sci. Rep. 11(1), 1–10 (2021)

    Google Scholar 

  65. A. Bafekry, I. Abdolhosseini Sarsari, M. Faraji, M.M. Fadlallah, H.R. Jappor, S. Karbasizadeh, V. Nguyen, M. Ghergherehchi. Appl. Phys. Lett. 118(14), 143102 (2021). https://doi.org/10.1063/5.0046721

    Article  ADS  Google Scholar 

  66. A. Bafekry, M. Shahrokhi, A. Shafique, H. R. Jappor, M. M. Fadlallah, C. Stampfl, M. Ghergherehchi, M. Mushtaq, S. A. H. Feghhi, D. Gogova. ACS Omega 6(14), 9433 (2021). https://doi.org/10.1021/acsomega.0c06024

    Article  Google Scholar 

  67. M. Faraji, A. Bafekry,  M. M. Fadlallah, F. Molaei, N. N. Hieu, P. Qian,  M. Ghergherehchi, D. Gogova. Phys. Chem. Chem. Phys. 23(28), 15319 (2021). https://doi.org/10.1039/d1cp01788h

    Article  Google Scholar 

  68. A. Bafekry, S. Karbasizadeh, C. Stampfl, M. Faraji, D.M. Hoat, I.A. Sarsari, S.A.H. Feghhia, M. Ghergherehchi. Phys. Chem. Chem. Phys. 23(28), 15216 (2021). https://doi.org/10.1039/d1cp01368h

    Article  Google Scholar 

  69. A.S.Z. Lahewil, Y. Al Douri, U. Hashim, N.M. Ahmed, Solar Energy 86, 3234 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Houssine Atmani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atmani, E., Bziz, I., Fazouan, N. et al. Comparative study by DFT method of structural, electronic and optical properties of monolayer, bilayer and bulk CdS. Appl. Phys. A 127, 878 (2021). https://doi.org/10.1007/s00339-021-05009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05009-3

Keywords

Navigation