Skip to main content
Log in

Perforated lightweight microwave metamaterial broadband absorber with discontinuous ground plane

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, we have demonstrated the fabrication of perforated absorbers on two substrates, i.e., ITO/PET and Twill weave cloth. Perforation is required to enable the use of absorbers in the application where air breathability, ventilation and thermal equilibrium are necessary. For perforations, holes were machined in all the layers of the absorber. To ascertain the effect of perforations on both the absorbers’ performance, simulation, using ANSYS HFSS software, was carried out. In the ITO/PET-based absorber, it was found that there were no significant effects of the variation of hole radius on the absorption. However, for textile-based absorber, the hole radius had a significant impact on the absorption. The proposed ITO/PET-based fabricated MMA can absorb radiation in the frequency band from 7.64 GHz to 16.6 GHz, whereas the textile-based absorber can absorb more than 90% of the frequency band corresponding to 6.61 GHz to 17.91 GHz. The measured absorptions are found to be in good agreement with the simulated results. Furthermore, perforation gives two mechanical advantages to the absorber: first, it reduces the absorber’s weight by 25% and 35%, respectively, in the case of ITO/PET- and textile-based absorber, and second, it increases the bendability of the absorber. Through experiments, we found that the perforated sample bends by an extra 22\(^{\circ }\) and 24\(^{\circ }\), respectively, for ITO/PET- and TWC-based absorber when placed as a cantilever. Theoretically, it was calculated that there would be a four-time increase in the absorber’s bendability due to perforations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.A. Ramakrishna, Rep. Prog. Phys. 68(2), 449 (2005)

    Article  ADS  Google Scholar 

  2. Y. Tayde, K. Chaudhary, G. Singh, A. Dhumal, M. Saikia, K.V. Srivastava, J. Ramkumar, S.A. Ramakrishna, Microw. Opt. Technol. Lett. 62(5), 1850 (2020)

    Article  Google Scholar 

  3. Y. Yoo, H. Zheng, Y. Kim, J. Rhee, J.H. Kang, K. Kim, H. Cheong, Y. Kim, Y. Lee, Appl. Phys. Lett. 105(4), 041902 (2014)

    Article  ADS  Google Scholar 

  4. R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, W. Zhang, J. Appl. Phys. 118(8), 083103 (2015)

    Article  ADS  Google Scholar 

  5. Y. Okano, S. Ogino, K. Ishikawa, IEEE Trans. Microw. Theor Tech. 60(8), 2456 (2012)

    Article  ADS  Google Scholar 

  6. K. Chaudhary, G. Singh, J. Ramkumar, S.A. Ramakrishna, K.V. Srivastava, P.C. Ramamurthy, IEEE transactions on components. Packag. Manuf. Technol. 10(3), 378 (2020)

    Article  Google Scholar 

  7. Y. Zheng, K. Chen, T. Jiang, J. Zhao, Y. Feng, J. Phys. D: Appl. Phys. 52(33), 335101 (2019)

    Article  ADS  Google Scholar 

  8. Q. Zhou, X. Yin, F. Ye, R. Mo, Z. Tang, X. Fan, L. Cheng, L. Zhang, Appl. Phys. A 125(2), 131 (2019)

    Article  ADS  Google Scholar 

  9. J. Tak, J. Choi, IEEE Antennas Wirel. Propag. Lett. 16, 784 (2016)

    Article  ADS  Google Scholar 

  10. G. Singh, H. Sheokand, K. Chaudhary, K.V. Srivastava, J. Ramkumar, S.A. Ramakrishna, J. Phys. D: Appl. Phys. 52(38), 385304 (2019)

    Article  Google Scholar 

  11. F. Yang, J. Gong, E. Yang, Y. Guan, X. He, S. Liu, X. Zhang, Y. Deng, Appl. Phys. A 125(2), 149 (2019)

    Article  ADS  Google Scholar 

  12. H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, R. Averitt, J. Phys. D: Appl. Phys. 43(22), 225102 (2010)

    Article  ADS  Google Scholar 

  13. G. Dayal, S.A. Ramakrishna, Opt. Exp. 20(16), 17503 (2012)

    Article  ADS  Google Scholar 

  14. G. Dayal, S.A. Ramakrishna, J. Opt. 15(5), 055106 (2013)

    Article  ADS  Google Scholar 

  15. J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, W. Jia, IEEE Photon. Technol. Lett. 26(9), 949 (2014)

    Article  ADS  Google Scholar 

  16. L.K. Sun, H.F. Cheng, Y.J. Zhou, J. Wang, Appl. Phys. A 105(1), 49 (2011)

    Article  ADS  Google Scholar 

  17. S.T. Bui, X.K. Bui, T.T. Nguyen, P. Lievens, Y. Lee, D.L. Vu et al., J. Opt. 15(7), 075101 (2013)

    Article  ADS  Google Scholar 

  18. R. Naorem, G. Dayal, S.A. Ramakrishna, B. Rajeswaran, A. Umarji, Opt. Commun. 346, 154 (2015)

    Article  ADS  Google Scholar 

  19. H. Jeong, S. Lim, Sci. Rep. 8(1), 1 (2018)

    ADS  Google Scholar 

  20. S.C. Bakshi, D. Mitra, in 2018 IEEE Indian Conference on Antennas and Propogation (InCAP) (IEEE, 2018), pp. 1–4

  21. J.W. Yu, Y. Cai, X.Q. Lin, X. Wang, IEEE Antennas Wirel. Propag. Lett. 19(1), 34 (2019)

    Article  ADS  Google Scholar 

  22. G. Singh, H. Sheokand, S. Ghosh, K.V. Srivastava, J. Ramkumar, S.A. Ramakrishna, Appl. Phys. A 125(1), 1 (2019)

    Article  Google Scholar 

  23. S. Ghosh, S. Bhattacharyya, Y. Kaiprath, K. VaibhavSrivastava, J. Appl. Phys. 115(10), 104503 (2014)

    Article  ADS  Google Scholar 

  24. C. Zhang, Q. Cheng, J. Yang, J. Zhao, T.J. Cui, Appl. Phys. Lett. 110(14), 143511 (2017)

    Article  ADS  Google Scholar 

  25. K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, B. Zhu, Opt. Exp. 25(5), 5571 (2017)

    Article  ADS  Google Scholar 

  26. G. Sen, S.N. Islam, A. Banerjee, S. Das, Prog. Electromagn. Res. 73, 9 (2017)

    Article  Google Scholar 

  27. E.J. Riley, E.H. Lenzing, R.M. Narayanan, IEEE Antennas Wirel. Propag. Lett. 17(6), 1060 (2018)

    Article  ADS  Google Scholar 

  28. H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K.V. Srivastava, J. Ramkumar, S.A. Ramakrishna, J. Appl. Phys. 122(10), 105105 (2017)

    Article  ADS  Google Scholar 

  29. S. Liu, H. Chen, T.J. Cui, Appl. Phys. Lett. 106(15), 151601 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The author wants to acknowledge Science and Engineering Research Board, India for funding the research work under grant number: IMP/2018/000043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaganpreet Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Bhardwaj, A., Srivastava, K.V. et al. Perforated lightweight microwave metamaterial broadband absorber with discontinuous ground plane. Appl. Phys. A 127, 858 (2021). https://doi.org/10.1007/s00339-021-05008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05008-4

Keywords

Navigation