Skip to main content
Log in

Production of selective gas sensors based on nanoparticles of PdO/Fe3O4

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Fabrication of gas sensors is witnessing great advancements due to recent progress in synthesis of metal-oxide nanoparticles with custom designed characteristics. Composition of nanoparticles allows access to the chemical features of the surface nanoparticles and utilization of physical features of the core nanoparticles. Furthermore, it enables formation of p − n heterojunctions among nanoparticles with depletion layers that enables to control the follow of charge carriers. Herein, nanoparticles of Fe3O4 and PdO are synthesized using a coprecipitation process and explored for their implementation for gas sensor applications. The mean grain sizes are 7.7 ∓ 2.3 nm and 6.4 ∓ 1.5 nm for Fe3O4 and PdO, respectively. The sensor devices are produced by depositing nanoparticles (dispersed) on substrates with pre-deposited interdigitated electrodes. Electrical characteristics are examined using impedance spectroscopy that enables calculation of the activation energy Ea = 0.66 ± 0.04 eV. The produced sensors are selective for both H2 and H2S within different concentration ranges, where their minimum responses at ambient temperature are 1200 and 10 ppm for H2 and H2S gases, respectively. The gas sensor devices fabricated in this work exhibit potential for practical implementation because of their numerous advantages that incorporate simplified fabrication technique, low power consumption due to their functionality at ambient temperature, extraordinary sensitivity, practical response time, as well as their core that consists of magnetic nanoparticles which simplify their recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Haija, M. Chamakh, I. Othman, F. Banat, A.I. Ayesh, Fabrication of H2S gas sensors using ZnxCu1-xFe2O4 nanoparticles. Appl. Phys. A 126, 489 (2020)

    Article  ADS  Google Scholar 

  2. W. Jaeschke, H. Claude, J. Herrmann, Sources and sinks of atmospheric H2S. J. Geophys. Res.: Oceans 85, 5639–5644 (1980)

    Article  ADS  Google Scholar 

  3. A.I. Ayesh, A.A. Alyafei, R.S. Anjum, R.M. Mohamed, M.B. Abuharb, B. Salah, M. El-Muraikhi, Production of sensitive gas sensors using CuO/SnO 2 nanoparticles. Appl. Phys. A 125, 1–8 (2019)

    Article  ADS  Google Scholar 

  4. A.I. Ayesh, A.F. Abu-Hani, S.T. Mahmoud, Y. Haik, Selective H2S sensor based on CuO nanoparticles embedded in organic membranes. Sens. Actuators, B Chem. 231, 593–600 (2016)

    Article  Google Scholar 

  5. A.F. Abu-Hani, Y.E. Greish, S.T. Mahmoud, F. Awwad, A.I. Ayesh, Low-temperature and fast response H2S gas sensor using semiconducting chitosan film. Sens. Actuators, B Chem. 253, 677–684 (2017)

    Article  Google Scholar 

  6. M.A. Haija, A.F. Abu-Hani, N. Hamdan, S. Stephen, A.I. Ayesh, Characterization of H2S gas sensor based on CuFe2O4 nanoparticles. J. Alloy. Compd. 690, 461–468 (2017)

    Article  Google Scholar 

  7. R.B. Gupta, Hydrogen fuel: Production, Transport, and Storage, Crc Press, 2008

  8. A.I. Ayesh, S.T. Mahmoud, S.J. Ahmad, Y. Haik, Novel hydrogen gas sensor based on Pd and SnO2 nanoclusters. Mater. Lett. 128, 354–357 (2014)

    Article  Google Scholar 

  9. A.I. Ayesh, Linear hydrogen gas sensors based on bimetallic nanoclusters. J. Alloy. Compd. 689, 1–5 (2016)

    Article  Google Scholar 

  10. M.A. Haija, A.I. Ayesh, S. Ahmed, M.S. Katsiotis, Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin film. Appl. Surf. Sci. 369, 443–447 (2016)

    Article  ADS  Google Scholar 

  11. J. Van Lith, A. Lassesson, S. Brown, M. Schulze, J. Partridge, A. Ayesh, A hydrogen sensor based on tunneling between palladium clusters. Appl. Phys. Lett. 91, 181910 (2007)

    Article  ADS  Google Scholar 

  12. G.A. Poda, Hydrogen sulfide can be handled safely, archives of environmental health: an. Int. J. 12, 795–800 (1966)

    Google Scholar 

  13. A.I. Ayesh, Metal/metal-oxide nanoclusters for gas sensor applications. J. Nanomater. (2016). https://doi.org/10.1155/2016/2359019

    Article  Google Scholar 

  14. A.I. Ayesh, M.A. Haija, A. Shaheen, F. Banat, Spinel ferrite nanoparticles for H2S gas sensor. Appl. Phys. A 123, 682 (2017)

    Article  Google Scholar 

  15. M. Rosenberg, G. Kulkarni, A. Bosy, C. McCulloch, Reproducibility and sensitivity of oral malodor measurements with a portable sulphide monitor. J. Dent. Res. 70, 1436–1440 (1991)

    Article  Google Scholar 

  16. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869–1871 (2002)

    Article  ADS  Google Scholar 

  17. M. Gaidi, Nanostructured SnO 2 thin films: effects of porosity and catalytic metals on gas-sensing sensitivity. Appl. Phys. A 124, 725 (2018)

    Article  ADS  Google Scholar 

  18. E.R. Kumar, P.S.P. Reddy, G.S. Devi, S. Sathiyaraj, Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398(2016), 281–288 (2016)

    Article  ADS  Google Scholar 

  19. Y. Wu, N. Huang, J. Wang, Sensitive characteristics of ZnO nano gas sensor based on dynamic temperature modulation. Results Phys. 18, 103241 (2020)

    Article  Google Scholar 

  20. C.-J. Huang, F.-M. Pan, H.-Y. Chen, Li-Chang, Growth and photoresponse study of PdO nanoflakes reactive-sputter deposited on SiO 2. J. Appl. Phys. 108, 053105 (2010)

    Article  ADS  Google Scholar 

  21. J. Hinojosa, A. Jose, H.H. Kan, J.F. Weaver, Molecular chemisorption of O2 on a PdO (101) thin film on Pd (111). J. Phys. Chem. C 112, 8324–8331 (2008)

    Article  Google Scholar 

  22. S. Specchia, E. Finocchio, G. Busca, P. Palmisano, V. Specchia, Surface chemistry and reactivity of ceria–zirconia-supported palladium oxide catalysts for natural gas combustion. J. Catal. 263, 134–145 (2009)

    Article  Google Scholar 

  23. T. Nunome, H. Irie, N. Sakamoto, O. Sakurai, K. Shinozaki, H. Suzuki, N. Wakiya, Magnetic and photocatalytic properties of n-and p-type ZnFe2O4 particles synthesized using ultrasonic spray pyrolysis. J. Ceram. Soc. Jpn. 121, 26–30 (2013)

    Article  Google Scholar 

  24. H. Singh, J. Du, P. Singh, G.T. Mavlonov, T.H. Yi, Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study. J. Photochem. Photobiol. B 185, 100–110 (2018)

    Article  Google Scholar 

  25. N. Nakagiri, M. Manghnani, L. Ming, S. Kimura, Crystal structure of magnetite under pressure. Phys. Chem. Miner. 13, 238–244 (1986)

    Article  ADS  Google Scholar 

  26. O. Glemser, G. Peuschel, Beitrag zur kenntnis des systems PdO/H2O. Z. Anorg. Allg. Chem. 281, 44–53 (1955)

    Article  Google Scholar 

  27. L.A. Al-Sulaiti, B. Salah, A.I. Ayesh, Investigation of flexible polymer-Tl2O3 nanocomposites for x-ray detector applications. Appl. Surf. Sci. 489, 351–357 (2019)

    Article  ADS  Google Scholar 

  28. V. Josh, M.Y. Haik, A.I. Ayesh, M.A. Mohsin, Y. Haik, Electrical properties of sorbitol doped PVA-PAA polymer membranes. J. Appl. Polym. Sci. 128, 3861–3869 (2012)

    Article  Google Scholar 

  29. A.I. Ayesh, Electronic transport in Pd nanocluster devices. Appl. Phys. Lett. 98, 133108 (2011)

    Article  ADS  Google Scholar 

  30. A. Shaheen, M.A. Haija, M. Chamakh, G.A. Assayed, F. Banat, A.I. Ayesh, Fabrication and characterization of poly (vinyl alcohol)–Glycerol–Spinel ferrites flexible membranes. J. Appl. Polym. Sci. 137(24), 48821 (2019)

    Article  Google Scholar 

  31. M. Chamakh, A.I. Ayesh, M.F. Gharaibeh, Fabrication and characterization of flexible ruthenium oxide-loaded polyaniline/poly (vinyl alcohol) nanofibers. J. Appl. Polym. Sci. 137(38), 49125 (2020)

    Article  Google Scholar 

  32. A.I. Ayesh, A.F.S. Abu-Hani, S.T. Mahmoud, Y. Haik, Selective H2S sensor based on CuO nanoparticles embedded in organic membranes. Sens. Actuators B: Chem. 231, 593–600 (2016)

    Article  Google Scholar 

  33. N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators, B Chem. 5, 7–19 (1991)

    Article  Google Scholar 

  34. N.D. Hoa, N. Van Quy, H. Jung, D. Kim, H. Kim, S.-K. Hong, Synthesis of porous CuO nanowires and its application to hydrogen detection. Sens. Actuators, B Chem. 146, 266–272 (2010)

    Article  Google Scholar 

  35. A. Chapelle, M.H. Yaacob, I. Pasquet, L. Presmanes, A. Barnabé, P. Tailhades, J.D. Plessis, K. Kalantar-zadeh, Structural and gas-sensing properties of CuO–CuxFe3−xO4 nanostructured thin films. Sens. Actuators, B Chem. 153, 117–124 (2011)

    Article  Google Scholar 

  36. A.I. Ayesh, A.A. Alyafei, R.S. Anjum, R.M. Mohamed, M.B. Abuharb, B. Salah, M. El-Muraikhi, Production of sensitive gas sensors using CuO/SnO 2 nanoparticles. Appl. Phys. A 125, 550 (2019)

    Article  ADS  Google Scholar 

  37. F.E. Annanouch, Z. Haddi, S. Vallejos, P. Umek, P. Guttmann, C. Bittencourt, E. Llobet, Aerosol-assisted CVD-grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity-resilient detection of H2S. ACS Appl. Mater. Interfaces. 7, 6842–6851 (2015)

    Article  Google Scholar 

  38. C. Wang, Y. Zhang, X. Sun, Y. Sun, F. Liu, X. Yan, C. Wang, P. Sun, G. Lu, Preparation of Pd/PdO loaded WO3 microspheres for H2S detection. Sens. Actuators B: Chem. 321, 128629 (2020)

    Article  Google Scholar 

  39. C. Balamurugan, Y.J. Jeong, D.W. Lee, Enhanced H2S sensing performance of a p-type semiconducting PdO-NiO nanoscale heteromixture. Appl. Surf. Sci. 420, 638–650 (2017)

    Article  ADS  Google Scholar 

  40. N.S. Ramgir, C.P. Goyal, P.K. Sharma, U.K. Goutam, S. Bhattacharya, N. Datta, M. Kaur, A.K. Debnath, D.K. Aswal, S.K. Gupta, Selective H2S sensing characteristics of CuO modified WO3 thin films. Sens. Actuators, B Chem. 188, 525–532 (2013)

    Article  Google Scholar 

  41. J. Liu, X. Huang, G. Ye, W. Liu, Z. Jiao, W. Chao, Z. Zhou, Z. Yu, H2S Detection sensing characteristic of CuO/SnO2 sensor. Sensors 3, 110–118 (2003)

    Article  ADS  Google Scholar 

  42. Y.-J. Chen, F.-N. Meng, H.-L. Yu, C.-L. Zhu, T.-S. Wang, P. Gao, Q.-Y. Ouyang, Sonochemical synthesis and ppb H2S sensing performances of CuO nanobelts. Sens. Actuators, B Chem. 176, 15–21 (2013)

    Article  Google Scholar 

  43. Occupational Safety and Health Administration, Hydrogen Sulfide, in: Safety and Health Topics, United States Department of Labour USA

Download references

Acknowledgements

This work was supported by Qatar University under Grant Number, IRCC-2019-003. The TEM, SEM, EDS, and XRD measurements were accomplished in the Central Laboratories unit at Qatar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad I. Ayesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayesh, A.I., Salah, B. Production of selective gas sensors based on nanoparticles of PdO/Fe3O4. Appl. Phys. A 127, 843 (2021). https://doi.org/10.1007/s00339-021-05004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05004-8

Keywords

Navigation