Skip to main content

Advertisement

Log in

Tuning structural, optical, electrical and photovoltaic characteristics of n-type CdS1−xSbx layers for optimizing the performance of n-(CdS:Sb)/p-Si solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural, optical, electrical and photoelectric properties of n-type CdS1−xSbx layers at varied Sb doping concentrations (x = 0, 0.2, 0.4 and 0.6 at.%) were studied. The melt quenching process was used to generate the bulk form, whereas the thin layers were formed using the thermal evaporation method. To fabricate the Al/n-(CdS:Sb)/p-Si/Pt solar cell, pure CdS and antimony-doped CdS layers of up to 200 nm thickness (n-type side) were deposited on a single-crystallized silicon glass substrate (2 mm) with the Miller's directions (1 0 0). The fabricated solar cells' dark and illuminated current density–voltage (J–V), the power–voltage (P–V) and the capacitance–voltage (CV) characteristics were thoroughly studied. As well, the open-circuit voltage, the short-circuit current, the fill factor and the power conversion efficiency (PCE) for the studied solar cell were computed. When the antimony ratio is 0.6 at.%, the maximum power conversion efficiency is 30.56%, with the main parameters: Jsc = 26.27 mA/cm2, Voc = 0.84 V, and FF = 0.692. In the instance of using the manufactured devices as detectors, the responsivity and quantum efficiency in the spectrum range of (100–1000 nm) were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)

    ADS  Google Scholar 

  2. A. Poncela, A blended learning approach for an electronic instrumentation course. Int. J. Electr. Eng. 50, 1–18 (2013)

    ADS  Google Scholar 

  3. S.-W. Hung, Competitive strategies for Taiwan’s thin film transistor-liquid crystal display (TFT-LCD) industry. Technol. Soc. 28, 349–361 (2006)

    Google Scholar 

  4. M. Härting, J. Zhang, D.R. Gamota, D.T. Britton, Fully printed silicon field effect transistors. Appl. Phys. Lett. 94, 193509 (2009)

    ADS  Google Scholar 

  5. O.O. Abegunde, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi, A.U. Ude, Overview of thin film deposition techniques. AIMS Mater. Sci. 6, 174–199 (2019)

    Google Scholar 

  6. J.N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S.M. Smith, J.H. Baker, H.G. Tompkins, Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry. Thin Solid Films 516, 7979–7989 (2008)

    ADS  Google Scholar 

  7. G. Hodes, Chemical Solution Deposition of Semiconductor Films (CRC Press, London, 2002)

    Google Scholar 

  8. A. Beggas, B. Benhaoua, A. Attaf, M.S. Aida, Growth study of CdS thin films deposited by chemical bath. Optik 127, 8423–8430 (2016)

    ADS  Google Scholar 

  9. N. Chodavadiya, A. Chapanari, J. Zinzala, J. Ray, S. Pandya, Synthesis and characterization of cadmium sulphide thin films prepared by spin coating. AIP Conf Proc. 1961, 030005 (2018)

    Google Scholar 

  10. A.S. Lahewil, Y. Al-Douri, U. Hashim, N.M. Ahmed, Structural, analysis and optical studies of cadmium sulfide nanostructured. Proc. Eng. 53, 217–224 (2013)

    Google Scholar 

  11. N. Memarian, S.M. Rozati, I. Concina, A. Vomiero, Deposition of nanostructured CdS thin films by thermal evaporation method: effect of substrate temperature. Materials 10, 773 (2017)

    ADS  Google Scholar 

  12. M. Dey, N.K. Das, A.S. Gupta, M. Dey, M.S. Hossain, M.A. Matin, N. Amin, Deposition of CdS thin film by thermal evaporation, in International Conference on Electrical Computer and Communication Engineering, pp. 1–5 (2019)

  13. P.P. Sahay, R.K. Nath, S. Tewari, Optical properties of thermally evaporated CdS thin films. Cryst. Res. Technol. 42, 275–280 (2007)

    Google Scholar 

  14. S.A.-J. Jassim, A. Abubaker, R.A. Zumaila, Influence of substrate temperature on the structural, optical and electrical properties of CdS thin films deposited by thermal evaporation. Res. Phys. 3, 173–178 (2013)

    Google Scholar 

  15. Yadav, A.A., Masumdar, E.U.: Photoelectrochemical investigations of cadmium sulphide (CdS) thin film electrodes prepared by spray pyrolysis. J. Alloys Compd. 509, 5394–5399 (2011)

    Google Scholar 

  16. F.T. Chari, M.R. Fadavieslam, Microstructural, optical and electrical properties of CdS thin films grown by spray pyrolysis technique as a function of substrate temperature. Opt. Quantum Electron. 51, 1–16 (2019)

    Google Scholar 

  17. A.A. Yadav, M.A. Barote, E.U. Masumdar, Studies on nanocrystalline cadmium sulphide (CdS) thin films deposited by spray pyrolysis. Solid State Sci. 12, 1173–1177 (2010)

    ADS  Google Scholar 

  18. A.J. Khimani, S.H. Chaki, T.J. Malek, J.P. Tailor, S.M. Chauhan, M.P. Deshpande, Cadmium sulphide (CdS) thin films deposited by chemical bath deposition (CBD) and dip coating techniques—a comparative study. Mater. Res. Express. 5, 036406 (2018)

    ADS  Google Scholar 

  19. J.P. Enriquez, X. Mathew, Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films. Sol. Energy Mater Sol. Cells. 76, 313–322 (2003)

    Google Scholar 

  20. P. Liu, V.P. Singh, C.A. Jarro, S. Rajaputra, Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS–CdTe solar cells. Nanotechnology. 22, 145304 (2011)

    ADS  Google Scholar 

  21. A. Kariper, E.M.İN.E. Güneri, F. Göde, C.E.B.R.A.İL. Gümüş, T.A.L.A.T. Özpozan, The structural, electrical and optical properties of CdS thin films as a function of pH. Mater. Chem. Phys. 129, 183–188 (2011)

    Google Scholar 

  22. S.A. Mahmoud, A.A. Ibrahim, A.S. Riad, Physical properties of thermal coating CdS thin films using a modified evaporation source. Thin Solid Films 372, 144–148 (2000)

    ADS  Google Scholar 

  23. Ş Baturay, Indium doping on the structural, surface and optical properties of CdS thin films prepared by ultrasonic spray pyrolysis method. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19, 264–274 (2017)

    Google Scholar 

  24. J. Jie, W. Zhang, I. Bello, C.S. Lee, S.T. Lee, One-dimensional II–VI nanostructures: synthesis, properties and optoelectronic applications. Nano Today 5, 313–336 (2010)

    Google Scholar 

  25. K. Poornima, K.G. Krishnan, B. Lalitha, M. Raja, CdS quantum dots sensitized Cu doped ZnO nanostructured thin films for solar cell applications. Superlattices Microstruct. 83, 147–156 (2015)

    ADS  Google Scholar 

  26. A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, H. Erguig, Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis. J. Alloys Compd. 557, 53–59 (2013)

    Google Scholar 

  27. M.G. Vijaya, Structural, optical and electrical studies on spray deposited mercury doped cadmium sulphide thin films. IJRAP 3, 17–22 (2014)

    Google Scholar 

  28. S.A. Hameed, Structural and electrical properties of CdS & CdS:Sb thin films prepared by flash evaporation technique. Albahir J. 6, 11 (2017)

    ADS  Google Scholar 

  29. L. Saravanan, R. Jayavel, A. Pandurangan, L. Jih-Hsin, M. Hsin-Yuan, Synthesis, structural and optical properties of Sm3+ and Nd3+ doped cadmium sulfide nanocrystals. Mater. Res. Bull. 52, 128–133 (2014)

    Google Scholar 

  30. M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, S. Agilan, R. Balasundaraprabhu, Impedance spectroscopy and dielectric properties of cobalt doped CdS nanoparticles. Powder Technol. 217, 1–6 (2012)

    Google Scholar 

  31. J.C. Orlianges, C. Champeaux, P. Dutheil, A. Catherinot, T.M. Mejean, Structural, electrical and optical properties of carbon-doped CdS thin films prepared by pulsed-laser deposition. Thin Solid Films 519, 7611–7611 (2011)

    ADS  Google Scholar 

  32. Z. Fang, X.C. Wang, H.C. Wu, C.Z. Zhao, Achievements and challenges of CdS/CdTe solar cells. Int. J. Photoenergy (2011). https://doi.org/10.1155/2011/297350

    Article  Google Scholar 

  33. J. Britt, C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993)

    ADS  Google Scholar 

  34. B.A. Ahmed, I.H. Shallal, F.I. Mustafa AL-Attar, Physical properties of CdS/CdTe/CIGS thin films for solar cell application. J. Phys. Conf. Ser. 1032, 012022 (2018)

    Google Scholar 

  35. A. Morales-Acevedo, Thin film CdS/CdTe solar cells: research perspectives. Sol. Energy 80, 675–681 (2006)

    ADS  Google Scholar 

  36. X. Mathew, J.P. Enriquez, A. Romeo, A.N. Tiwari, CdTe/CdS solar cells on flexible substrates. Sol. Energy 77, 831–838 (2004)

    ADS  Google Scholar 

  37. N. Romeo, A. Bosio, V. Canevari, A. Podesta, Recent progress on CdTe/CdS thin film solar cells. Sol. Energy 77, 795–801 (2004)

    ADS  Google Scholar 

  38. M. Ahmed, A. Bakry, E.R. Shaaban, H. Dalir, Structural, electrical, and optical properties of ITO thin films and their influence on performance of CdS/CdTe thin-film solar cells. J. Mater. Sci. Mater. 32, 1–12 (2021)

    Google Scholar 

  39. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)

    Google Scholar 

  40. B. Chen, C.-S. Lee, S.-T. Lee, P. Webb, Y.-C. Chan, W. Gambling, He. Tian, W. Zhu, Improved time-of-flight technique for measuring carrier mobility in thin films of organic electroluminescent materials. Jpn. J. Appl. Phys. 39, 1190 (2000)

    ADS  Google Scholar 

  41. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, A. Qasem, Sheet resistance–temperature dependence, thermal and electrical analysis of As40S60−xSex thin films. Appl. Phys. A 126, 1–10 (2020)

    Google Scholar 

  42. J. Krupka, W. Strupinski, Measurements of the sheet resistance and conductivity of thin epitaxial graphene and SiC films. Appl. Phys. Lett. 96, 082101 (2010)

    ADS  Google Scholar 

  43. A. Abdel-Galil, M.R. Balboul, H.E. Ali, Synthesis and characterization of γ-irradiated cadmium sulfide/polyvinyl alcohol nanocomposites films. J. Electron. Mater. 49, 2222–2232 (2020)

    ADS  Google Scholar 

  44. Y. Natsume, H. Sakata, Electrical and optical properties of zinc oxide films post-annealed in H2 after fabrication by sol–gel process. Mater. Chem. Phys. 78, 170–176 (2003)

    Google Scholar 

  45. H.M. Cohen, H. Fritzsche, S.R. Ovshinsky, Simple band model for amorphous semiconducting alloys. Phys. Rev. Lett. 22, 1065 (1969)

    ADS  Google Scholar 

  46. A. Qasem, M.Y. Hassaan, M.G. Moustafa, M.A. Hammam, H.Y. Zahran, I.S. Yahia, E.R. Shaaban, Optical and electronic properties for As-60 at.% S uniform thickness of thin films: Influence of Se content. Opt. Mater. 109, 110257 (2020)

    Google Scholar 

  47. A. Qasem, E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, M.A. Hammam, Investigation of optical and electrical properties of different compositions of As–S–Se thin films at thickness 725 nm with high precision using a wedge-shaped optical model. J. Electron. Mater. 49, 5750–5761 (2020)

    ADS  Google Scholar 

  48. H.I. Elsaeedy, A. Qasem, M. Mahmoud, H.A. Yakout, S.A. Abdelaal, The precise role of UV exposure time in controlling the orbital transition energies, optical and electrical parameters of thermally vacuum evaporated Se50Te50 thin film. Opt. Mater. 115, 111053 (2021)

    Google Scholar 

  49. M. Ahmed, A. Bakry, A. Qasem, H. Dalir, The main role of thermal annealing in controlling the structural and optical properties of ITO thin film layer. Opt. Mater. 113, 110866 (2021)

    Google Scholar 

  50. A.F. Naim, A.H. Farha, A. Qasem, E.R. Shaaban, The main role of bismuth in controlling linear and nonlinear optical, electronic and electrical parameters of Se–Ge–Bi thin films. J. Mater. Sci. Mater. 32, 6866–6882 (2021)

    Google Scholar 

  51. Z.A. Alrowaili, M.M. Soraya, T.A. Alsultani, A. Qasem, E.R. Shaaban, M. Ezzeldien, Sn-induced changes in the structure and optical properties of amorphous As–Se–Sn thin films for optical devices. Appl. Phys. A. 127, 1–11 (2021)

    Google Scholar 

  52. M. Alzaid, A. Qasem, E.R. Shaaban, N.M.A. Hadia, Extraction of thickness, linear and nonlinear optical parameters of Ge20+xSe80x thin films at normal and slightly inclined light for optoelectronic devices. Opt. Mater. 110, 110539 (2020)

    Google Scholar 

  53. A. Gadalla, F.A. Anas, A. Qasem, E.R. Shaaban, Optical constants and dispersion parameters of amorphous Se65−xAs35Sbx thick films for optoelectronics. Indian J. Phys. 95, 1–11 (2020)

    Google Scholar 

  54. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, A. Qasem, G.A. Ali, Optical constants, dispersion parameters and non-linearity of different thickness of As40S45Se15 thin films for optoelectronic applications. Optik 186, 275–287 (2019)

    ADS  Google Scholar 

  55. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, A. Qasem, G.A.M. Ali, E.S. Yousef, Investigation of structural and optical properties of amorphous-crystalline phase transition of As40S45Se15 thin films. Acta Phys. Pol. 136, 498 (2019)

    ADS  Google Scholar 

  56. I.S. Yahia, G.F. Salem, J. Iqbal, F. Yakuphanoglu, Linear and nonlinear optical discussions of nanostructured Zn-doped CdO thin films. Phys. B Condens. Matter 511, 54–60 (2017)

    ADS  Google Scholar 

  57. S.H. Wemple, M. DiDomenico Jr., Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B. 3, 1338 (1971)

    ADS  Google Scholar 

  58. S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B. 7, 3767 (1973)

    ADS  Google Scholar 

  59. M.M. Malik, M. Zulfequar, A. Kumar, M. Husain, Effect of indium impurities on the electrical properties of amorphous Ga30Se70. J. Phys. Condens. Matter. 4, 8331 (1992)

    ADS  Google Scholar 

  60. M.M. Abd El-Raheem, Optical properties of AsSeTl thin films deposited by e-beam evaporation technique. Surf. Rev. Lett. 18, 71–75 (2011)

    ADS  Google Scholar 

  61. A.R. Vearey-Roberts, D.A. Evans, Modification of GaAs Schottky diodes by thin organic interlayers. Appl. Phys. Lett. 86, 072105 (2005)

    ADS  Google Scholar 

  62. S. Darwish, H.S. Soliman, A.S. Riad, Transport properties of n-CdS0.5Se0.5/p-InP heterojunction cells. Thin Solid Films 259, 248–252 (1995)

    ADS  Google Scholar 

  63. S.E. Meftah, M. Benhaliliba, M. Kaleli, C.E. Benouis, C.A. Yavru, A.B. Bayram, Innovative organic MEH-PPV heterojunction device made by USP and PVD. J. Electron. Mater. 50, 2287–2294 (2021)

    ADS  Google Scholar 

  64. A.S. Riad, Influence of dioxygen and annealing process on the transport properties of nickel phthalocyanine Schottky-barrier devices. Phys. B Condens. Matter. 270, 148–156 (1999)

    ADS  Google Scholar 

  65. H.I. Elsaeedy, A. Qasem, H.A. Yakout, M. Mahmoud, The pivotal role of TiO2 layer thickness in optimizing the performance of TiO2/p-Si solar cell. J. Alloys Compd. 867, 159150 (2021)

    Google Scholar 

  66. J.K. Kang, C.B. Musgrave, The mechanism of HF/H2O chemical etching of SiO2. J. Chem. Phys. 116, 275–280 (2002)

    ADS  Google Scholar 

  67. L. Kavan, N. Tétreault, T. Moehl, M. Grätzel, Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. J. Phys. Chem. C 118, 16408–16418 (2014)

    Google Scholar 

  68. H. Uslu, A. Bengi, S.Ş Çetin, U.M.U.T. Aydemir, Ş Altındal, S.T. Aghaliyeva, S. Özçelik, Temperature and voltage dependent current-transport mechanisms in GaAs/AlGaAs single-quantum-well lasers. J. Alloys Compd. 507, 190–195 (2010)

    Google Scholar 

  69. J. Jhaveri, Interface Recombination in TiO2/Silicon Heterojunctions for Silicon Photovoltaic Applications. Diss. Princeton University, 2018.

  70. T.B. Jomaa, L. Beji, A. Ltaeif, A. Bouazizi, The current–voltage characteristics of heterostructures formed by MEH-PPV spin-coated on n-type GaAs and n-type porous GaAs. Mater. Sci. Eng. C. 26, 530–533 (2006)

    Google Scholar 

  71. M. Echabaane, A. Rouis, I. Bonnamour, H.B. Ouada, Electrical and electrochemical properties of the MEH–PPV and MEH–PPV doped calix [4] arene derivative layers for the detection of Cu2+ and Na+ ions. Measurement 46, 2411–2422 (2013)

    ADS  Google Scholar 

  72. H.I. Elsaeedy, A.A. Hassan, H.A. Yakout, A. Qasem, The significant role of ZnSe layer thickness in optimizing the performance of ZnSe/CdTe solar cell for optoelectronic applications. Opt Laser Technol. 141, 107139 (2021)

    Google Scholar 

  73. S. Meir, C. Stephanos, T.H. Geballe, J. Mannhart, Highly-efficient thermoelectronic conversion of solar energy and heat into electric power. J. Renew. Sustain. Energy. 5, 043127 (2013)

    Google Scholar 

  74. A.S. Maki, H.K. Hassun, Effect of aluminum on characterization of ZnTe/n-Si heterojunction photo detector. J. Phys. Conf. Ser. 1003, 012085 (2018)

    Google Scholar 

  75. S. Manna, S. Das, S.P. Mondal, R. Singha, S.K. Ray, High efficiency Si/CdS radial nanowire heterojunction photodetectors using etched Si nanowire templates. J. Phys. Chem. C. 116, 7126–7133 (2012)

    Google Scholar 

  76. H.I. Hussein, A.H. Shaban, I.H. Khudayer, Enhancements of p-Si/CdO thin films solar cells with doping (Sb, Sn, Se). Energy Proc. 157, 150–157 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through Research Groups Program under Grant No. R.G.P.2/54/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Qasem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 453 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasem, A., Alshahrani, B., Yakout, H.A. et al. Tuning structural, optical, electrical and photovoltaic characteristics of n-type CdS1−xSbx layers for optimizing the performance of n-(CdS:Sb)/p-Si solar cells. Appl. Phys. A 127, 849 (2021). https://doi.org/10.1007/s00339-021-04999-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04999-4

Keywords

Navigation