Skip to main content
Log in

Preparation and properties of Si/Ni intermediate band photovoltaic materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The intermediate band solar cell (IBSC) is one of the third-generation photovoltaic devices, whose theoretical conversion efficiencies can exceed the limit of Shockley and Queisser. The preparation of intermediate band (IB) materials is a key for IBSC applications. In this work, we explore to prepare IB materials by nickel (Ni) implantation in silicon (Si) followed by a rapid thermal process (RTP). The results show that the Ni concentrations in the effective doping zone exceed the Mott limit. The minority carrier lifetimes of the samples increase with the increase in Ni doping concentration. It proved that the non-radiative recombination is suppressed so that an IB is formed in Si. Moreover, the ion implantation of Ni can damage the Si lattice. The broken lattices can be recovered by controlling temperature and time of annealing. SEM shows the surface morphology of the materials, and X-ray diffraction (XRD) results show that the Si/Ni samples are single-phase structure. Furthermore, it is found that the IB for the Si/Ni samples is located at about 0.25 eV above the valence band edge. These results indicate that Ni-doped in Si can effectively form the intermediate band photovoltaic materials by ion implantation and RTP method.

Graphical Abstract

Arrhenius analysis of DLTS shows that Ni doping in silicon can effectively form an intermediate band by ion implantation and RTP method, and the intermediate band is located at about 0.25 eV above the valence band edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Luque, A. Martí, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997)

    Article  ADS  Google Scholar 

  2. Y. Xue, L. Ding, W. Zhou, W. Kuang, D. Huang, A low cost and nontoxic absorber for intermediate band solar cell based on P-doped Cu2SiS3: A first-principles study. Thin Solid Films 718, 138473 (2021)

    Article  ADS  Google Scholar 

  3. A.E. Asmae, F. Kawtar, C. Maykel, D. Francis, L. David, L.M. Pérez, Z. Mimoun, F.E. Mustapha, Numerical modeling of the size effect in CdSe/ZnS and InP/ZnS-based intermediate band solar cells. Phys. Scr. 96, 035502 (2020)

    Article  Google Scholar 

  4. M. Kunrugsa, Optical absorption coefficient calculations of GaSb/GaAs quantum dots for intermediate band solar cell applications. J. Phys. D: Appl. Phys. 54, 045103 (2021)

    Article  ADS  Google Scholar 

  5. X. Qu, Y. He, M. Qu, T. Ruan, F. Chu, Z. Zheng, Y. Ma, Y. Chen, X. Ru, X. Xu, H. Yan, L. Wang, Y. Zhang, X. Hao, Z. Hameiri, Z.-G. Chen, L. Wang, K. Zheng, Identification of embedded nanotwins at c-Si/a-Si: H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nat. Energy 6, 194–202 (2021)

    Article  ADS  Google Scholar 

  6. Y.-D. Luo, R. Tang, S. Chen, J.-G. Hu, Y.-K. Liu, Y.-F. Li, X.-S. Liu, Z.-H. Zheng, Z.-H. Su, X.-F. Ma, P. Fan, X.-H. Zhang, H.-L. Ma, Z.-G. Chen, G.-X. Liang, An effective combination reaction involved with sputtered and selenized Sb precursors for efficient Sb2Se3 thin film solar cells. Chem. Eng. J. 1, 124599 (2020)

    Article  Google Scholar 

  7. Y. Bai, Y. Lin, L. Ren, X.-L. Shi, E. Strounina, Y. Deng, Q. Wang, Y. Fang, X. Zheng, Y. Lin, Z.-G. Chen, Y. Du, L. Wang, J. Huang, Oligomeric silica-wrapped perovskites enable synchronous defect passivation and grain stabilization for efficient and stable perovskite photovoltaics. ACS Energy Lett. 4, 1231–1240 (2019)

    Article  Google Scholar 

  8. T. Nozawa, Y. Arakawa, Detailed balance limit of the efficiency of multilevel intermediate band solar cells. Appl. Phys. Lett. 98, 171108 (2011)

    Article  ADS  Google Scholar 

  9. T. Sogabe, C.Y. Hung, R. Tamaki, S. Tomi, K. Yamaguchi, N. Ekins-Daukes, Y. Okada, Experimental demonstration of energy-transfer ratchet intermediate-band solar cell. Commun. Phys. 4, 38 (2021)

    Article  Google Scholar 

  10. S.A. Khelifi, M. Blal, L. Boudaoud, R. Dabou, A. Ziane, A. Neçaibia, A. Bouraiou, A. Rouabhia, M. Mostefaoui, A. Slimani, B. Tidjar, Quantum efficiency improvement depending on the oxygen doping density, temperature, and layer thicknesses of an intermediate band solar cell based on ZnTe:O: Numerical analysis. Optik 224, 165432 (2021)

    Article  ADS  Google Scholar 

  11. Y. Okada, N.J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C.C. Phillips, D.J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, J.F. Guillemoles, Intermediate band solar cells: Recent progress and future directions. Appl. Phys. Rev. 2, 021302 (2015)

    Article  ADS  Google Scholar 

  12. C.T. Crespo, Effect of band occupations in intermediate-band solar cells. Sol. Energy 178, 157–161 (2019)

    Article  ADS  Google Scholar 

  13. S. Elewa, B. Yousif, A.-E. Mohy, Efficiency enhancement of intermediate band solar cell using front surface pyramid grating. Opt. Quant. Electron. 53, 360 (2021)

    Article  Google Scholar 

  14. F. Marian, L. Hwang, P. Irina, P. Martin, F. Lucia, Z.T. David, P.D. Jonathan, Improving solar cell efficiency using photonic band-gap materials. Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007)

    Article  Google Scholar 

  15. J. Jiang, Y. Xue, W. Zhou, L. Ding, H. Ning, X. Liang, W. Zhou, J. Guo, D. Huang, Inserting an intermediate band in Cu- and Ag-based Kesterite compounds by Sb doping: A first-principles study. Mater. Sci. Eng. B 264, 114937 (2021)

    Article  Google Scholar 

  16. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  ADS  Google Scholar 

  17. W. Wang, A.S. Lin, J.D. Phillips, Intermediate-band photovoltaic solar cell based on ZnTe:O. Appl. Phys. Lett. 95, 011103 (2009)

    Article  ADS  Google Scholar 

  18. A. Amine, A. Wakif, M.A. Kinani, Y. Mir, A. Oukerroum, M. Zazoui, Insights into the effects of quantum dots size and temperature on efficiency of InAs/GaAs quantum dots intermediate band solar cell. Phys. A 547, 123786 (2020)

    Article  Google Scholar 

  19. D.V. Pandi, V. Saraswathi, N. Muthukumarasamy, S. Agilan, P. Balraju, V. Dhayalan, C-axis oriented ZnO nanorods based quantum dot solar cells. Opt. Mater. 112, 110774 (2021)

    Article  Google Scholar 

  20. M. Sotodeian, M. Marandi, Effects of PbS quantum dots layer and different light scattering films on the photovoltaic performance of double passivated PbS, CdS and CdSe quantum dots sensitized solar cells. Sol. Energy 221, 418–432 (2021)

    Article  ADS  Google Scholar 

  21. H. Abboudi, H.E. Ghazi, A. Jorio, I. Zorkani, Impurity-related photovoltaic efficiency of (In, Ga)N/GaN quantum well-single intermediate band solar cell considering heavy hole impact. Superlatt. Microstruct. 150, 106756 (2021)

    Article  Google Scholar 

  22. X. Ma, Z. Li, Half-filled intermediate bands in doped inorganic perovskites for solar cells. Phys. Chem. Chem. Phys. 22, 23804–23809 (2020)

    Article  Google Scholar 

  23. Y. Xue, W. Zhou, L. Ding, J. Jiang, H. Ning, X. Liang, W. Zhou, J. Guo, D. Huang, First-principles study on Sb-doped SnS2 as a low cost and non-toxic absorber for intermediate band solar cell. Phys. Lett. A 384, 126695 (2020)

    Article  Google Scholar 

  24. M. Waqar, A.U. Saif, D.U. Amad, A. Junaid, N.F. Muhammad, A. Nazakat, H.U. Anwar, M. Kamran, B. Parveen, M. Rafiq, N.A. Shah, Pronounced impact of p-type carriers and reduction of bandgap in semiconducting ZnTe thin films by cu doping for intermediate buffer layer in heterojunction solar cells. Mater. 12, 1359 (2019)

    Article  Google Scholar 

  25. E. Antolín, A. Martí, J. Olea, D. Pastor, G. Gonzalez-Díaz, I. Martil, A. Luque, Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material. Appl. Phys. Lett. 94, 042115 (2009)

    Article  ADS  Google Scholar 

  26. M. Nematollahi, X.D. Yang, L.M.S. Aas, Z. Ghadyani, M. Kildemo, U.J. Gibson, T.W. Reenaas, Molecular beam and pulsed laser deposition of ZnS: Cr for intermediate band solar cells. Sol. Energy Mater. Sol. Cells 141, 322–330 (2015)

    Article  Google Scholar 

  27. A. Martí, C. Tablero, E. Antolín, A. Luque, R.P. Campion, S.V. Novikov, C.T. Foxon, Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells. Sol. Energy Mater. Sol. Cells 93, 641–644 (2009)

    Article  Google Scholar 

  28. G. Aditi, K. Karina, B.R. Bhagat, J. Sahariya, A. Soni, A. Dashora, Role of intermediate band and carrier mobility in Sn/Fe doped CuAlS2 thin film for solar cell: An ab-initio study. Sol. Energy 215, 144–150 (2021)

    Article  ADS  Google Scholar 

  29. C. Guillén, J. Herrero, Influence of Cu content on the physical characteristics of CuxGaCr0.1S2 thin films for intermediate band solar cells. J. Mater. Sci. Mater. Electron. 31, 22398–22407 (2020)

    Article  Google Scholar 

  30. H. Heidarzadeh, A. Rostami, M. Dolatyari, G. Rostami, Efficiency analysis and electronic structures of 3C-SiC and 6H-SiC with 3d elements impurities as intermediate band photovoltaics. J. Photon. Energy 4, 042098 (2014)

    Article  ADS  Google Scholar 

  31. E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, A. Luque, Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material. Appl. Phys. Lett. 94, 042115 (2009)

    Article  ADS  Google Scholar 

  32. A. Luque, A. Martí, E. Antolín, C. Tablero, Intermediate bands versus levels in non-radiative recombination. Phys. B 382, 320–327 (2006)

    Article  ADS  Google Scholar 

  33. P.G. Linares, A. Martí, E. Antolín, C.D. Farmer, C.R. Stanley, A. Luque, Voltage recovery in intermediate band solar cells. Sol. Energy Mater. Sol. Cells 98, 240–244 (2012)

    Article  Google Scholar 

  34. M. Luo, S.-J. Deng, L. Li, F. Song, L.-H. Wang, XAFS and SRGI-XRD studies of the local structure of tellurium corrosion of Ni-18%Cr alloy. Nucl. Sci. Tech. 30, 153 (2019)

    Article  Google Scholar 

  35. A. Fontcuberta, P. Roca, C. Clerc, Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements. Phys. Rev. B 69, 125307 (2004)

    Article  ADS  Google Scholar 

  36. J. Yuan, H. Huang, X. Deng, C. Liu, H. Chen, X. He, C. Gao, Z. Yue, Y. Zhao, L. Zhou, Preparation and characterization of the Si: Co layer for intermediate band solar cell applications. Opt. Mater. 77, 34–38 (2018)

    Article  ADS  Google Scholar 

  37. M. Menzinger, R. Wolfgang, The meaning and use of the Arrhenius activation energy, Angew. Chem. Int. Ed. 8, 438–444 (1969)

    Article  Google Scholar 

  38. M. Gassoumi, Characterization of deep levels in AlGaN/GaN HEMT by FT-DLTS and current DLTS. Semiconductor 54, 1296–1303 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11964018). The authors sincerely thank the group of photovoltaic research institute of Nanchang University for their equipment testing and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiren Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yuan, J., Xiao, J. et al. Preparation and properties of Si/Ni intermediate band photovoltaic materials. Appl. Phys. A 127, 859 (2021). https://doi.org/10.1007/s00339-021-04997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04997-6

Keywords

Navigation