Skip to main content
Log in

On B2O3/Bi2O3/Na2O/Gd2O3 glasses: synthesis, structure, physical characteristics, and gamma-ray attenuation competence

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Influence of Gd2O3 on the structure, physical, neutrons and gamma-photon protection features of newly prepared (50-x)B2O3 + 25Bi2O3 + 25Na2O + xGd2O3 glasses with different Gd2O3 concentrations was investigated. Glasses have been prepared via solid-state conventional method and encoded as Gd0, Gd1, Gd2, Gd3, and Gd4, respectively, according to xGd2O3 values. X-ray diffraction measurements proved that all Gd-glasses were in an amorphous nature. The density of the samples was increased from 5.1021 to 6.3210 g.cm−3. The mass attenuation coefficient (MAC) values were simulated via MCNPX in photon energy range of 15 keV–15 MeV and verified via XCOM program. The MACs were ranged from 28.69 to 32.52 cm2.g−1, while linear attenuation coefficient values were found to be ranged from 142 to 201 cm−1 for Gd0 and Gd4, respectively. The Gd4 glass has the lowest half value layer (HVL, highest radiation shielding capacity) among all the prepared Gd-glasses, several concretes, and conventional glasses. The atomic cross section (ACS) and electronic cross section (ECS) values were enhanced with the increment of Gd ratio in the sample compositions, and the measures of ACS were much greater than the ECS values. The effective atomic number (Zeff) values were ranged from 62.7 to 63.4 for Gd0 to Gd4, respectively. The effective conductivity (Ceff) is directly proportional to the density and effective electron density of the glass samples. By utilizing the Phy-X/PSD program, the maximum values of exposure buildup factor were slowly decreased with the addition of Gd2O3 contents and decreased from 55.8 to 55.3, while the highest energy absorption buildup factor increases slowly from 70.5 to 71.1 for glasses Gd0 and Gd4, respectively. The lowest values of fast neutron removal cross section (∑R, cm−1) were obtained for glasses Gd0 (∑R = 0.179 cm−1), while the highest value was obtained for glasses Gd4 (∑R = 0.179 cm−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. H.D. Robert, Glass Science, 2nd edn. (John Wiley&Sons, New York, 1994)

    Google Scholar 

  2. P. Subbalakshmi, N. Veeraiah, Study of CaO-WO3-P2O5 glass system by dielectric properties, IR spectra and differential thermal analysis. J. Non-Cryst. Solids 298, 89–98 (2002)

    Article  ADS  Google Scholar 

  3. B. Aktas, S. Yalcin, K. Dogru, Z. Uzunoglu, D. Yilmaz, Structural and radiation shielding properties of chromium oxide doped borosilicate glass. Radiat. Phys. Chem. 156, 144–149 (2019)

    Article  ADS  Google Scholar 

  4. V.B. Sreedhar, D. Ramachari, C.K. Jayasankar, Optical properties of zincfluorophosphate glasses doped with Dy3+ ions. Physica B Condens. Matter 408, 158–163 (2013)

    Article  ADS  Google Scholar 

  5. P. Pascuta, G. Borodi, E. Culea, Influence of europium ions on structure and crystallization properties of bismuth borate glasses and glass ceramics. J. Non-Cryst. Solids 354, 5475–5479 (2008)

    Article  ADS  Google Scholar 

  6. A. Terczynska-Madej, K. Cholewa-Kowalaska, M. Laczka, The effect of silicate network modifiers on colour and electron spectra of transition metal ions. Opt. Mater. 32, 1456–1462 (2010)

    Article  ADS  Google Scholar 

  7. H. Eskalen, Y. Kavun, S. Kerli, S. Eken, An investigation of radiation shielding properties of boron doped ZnO thin films. Opt. Mater. 105, 109871 (2020)

    Article  Google Scholar 

  8. M.K. Halimah, M.F. Faznny, M.N. Azlan, H.A.A. Sidek, Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results Phys. 7, 581–589 (2017)

    Article  ADS  Google Scholar 

  9. S.A. Umar, M.K. Halimah, K.T. Chan, A.A. Latif, Polarizability, optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses. J. Non-Cryst. Solids 471, 101–109 (2017)

    Article  ADS  Google Scholar 

  10. Y.S. Rammah, G. Kilic, R. El-Mallawany, U.G. Issever, F.I. El-Agawany, Investigation of optical, physical, and gamma-ray shielding features of novel vanadyl boro-phosphate glasses. J. Non-Cryst. Solids 533, 119905 (2020)

    Article  Google Scholar 

  11. G.D. Khattak, A. Mekki, Structure and electrical properties of SrO-borovanadate (V2O5)0.5(SrO)0.5y(B2O3)y glasses. J. Phys. Chem. Solids 70, 1330–1336 (2009)

    Article  ADS  Google Scholar 

  12. K.S. Shaaban, H.Y. Zahran, I.S. Yahia, H.I. Elsaeedy, E.R. Shaaban, S.A. Makhlouf, E.A.A. Wahab, E.S. Yousef, Mechanical and radiation-shielding properties of B2O3– P2O5–Li2O–MoO3 glasses. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-03982-9

    Article  Google Scholar 

  13. K.M. Mahmoud, Y.S. Rammah, Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code. Physica B 577, 411756 (2020)

    Article  Google Scholar 

  14. A.I. Elazaka, H.M.H. Zakaly, S.A.M. Issa, M. Rashad, H.O. Tekin, H.A. Saudi, V.H. Gillette, T.T. Erguzel, A.G. Mostafa, New approach to removal of hazardous bypass cement dust (BCD) from the environment: 20Na2O-20BaCl2-(60–x)B2O3-(x)BCD glass system and optical, mechanical, structural and nuclear radiation shielding competences. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2020.123738

    Article  Google Scholar 

  15. A.M. Ali, Y.S. Rammah, M.I. Sayyed, H.H. Somaily, H. Algarni, M. Rashad, The impact of lead oxide on the optical and gamma shielding properties of barium borate glasses. Appl. Phys. A 126, 280 (2020)

    Article  ADS  Google Scholar 

  16. E. Kavaz, F.I. El_Agawany, H.O. Tekin, U. Perişanoglu, Y.S. Rammah, Nuclear radiation shielding using barium borosilicate glass ceramics. Journal of Physics and Chemistry of Solids 142, 109437 (2020)

  17. Y.S. Rammah, E. Kavaz, H. Akyildirim, F.I. El-Agawany, Evaluation of photon, neutron, and charged particle shielding competences of TeO2-B2O3-Bi2O3-TiO2 glasses. J. Non-Cryst. Solids 535, 119960 (2020)

    Article  ADS  Google Scholar 

  18. Y.S. Rammah, F.I. El-Agawany, I.A. El-Mesady, Evaluation of photon attenuation and optical characterizations of bismuth lead borate glasses modified by TiO2. Appl. Phys. A 125, 727 (2019)

    Article  ADS  Google Scholar 

  19. M.S. Al-Buriahi, Y.S. Rammah, Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al2O3 and Na2O. Appl. Phys. A 125, 717 (2019)

    Article  ADS  Google Scholar 

  20. C. Eevon, M.K. Halimah, M.N. Azlan, R. El-Mallawany, S.L. Hii, Optical and thermal properties of TeO2–B2O3–Gd2O3 glass systems. Mater. Sci-Pol. 37(4), 517–525 (2019)

    Article  ADS  Google Scholar 

  21. M. Gökçe, D. Koçyiğit, Structural and optical properties of Gd+3 doped Bi2O3–GeO2 glasses and glass-ceramics. Mater. Res. Express 6, 025203 (2019)

    Article  ADS  Google Scholar 

  22. M. Mahmoud, S.A. Makhlouf, B. Alshahrani, H.A. Yakout, K.S. Shaaban, E.A.A. Wahab, Experimental and simulation investigations of mechanical properties and gamma radiation shielding of lithium cadmium gadolinium silicate glasses doped erbium ions. Silicon (2021). https://doi.org/10.1007/s12633-021-01062-y

    Article  Google Scholar 

  23. S. Kaewjang, U. Maghanemi, S. Kothan, H.J. Kim, P. Limkitjaroenporn, J. Kaewkhao, New gadolinium based glasses for gamma-rays shielding materials. Nucl. Eng. Des. 2080, 21–26 (2014)

    Article  Google Scholar 

  24. Y. Al-Hadeethi, M.I. Sayyed, J. Kaewkhao, A. Askin, B.M. Raffah, E.M. Mkawi, R. Rajaramakrishna, Physical, structural, optical, and radiation shielding properties of B2O3–Gd2O3–Y2O3 glass system. Appl. Phys. A 125, 852 (2019)

    Article  ADS  Google Scholar 

  25. RSICC Computer Code Collection. MCNPX User’s Manual Version 2.4.0. Monte Carlo N-Particle Transport Code System for Multiple and High Energy Applications, No Title, (2002) (n.d.)

  26. O. Agar, Z.Y. Khattari, M.I. Sayyed, H.O. Tekin, S. Al-Omari, M. Maghrabi, M.H.M. Zaid, I.V. Kityk, Evaluation of the shielding parameters of alkaline earth based phosphate glasses using MCNPX code. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2018.11.054

    Article  Google Scholar 

  27. H.O. Tekin, V.P. Singh, T. Manici, Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot. (2017). https://doi.org/10.1016/j.apradiso.2016.12.040

    Article  Google Scholar 

  28. E. Kavaz, N. Ekinci, H.O. Tekin, M.I. Sayyed, B. Aygün, U. Perişanoğlu, Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Prog. Nucl. Energy 115, 12–20 (2019). https://doi.org/10.1016/j.pnucene.2019.03.029

    Article  Google Scholar 

  29. Y. Elmahroug, M. Almatari, M.I. Sayyed, M.G. Dong, H.O. Tekin, Investigation of radiation shielding properties for Bi2O3-V2O5-TeO2 glass system using MCNP5 code. J. Non. Cryst. Solids (2018). https://doi.org/10.1016/j.jnoncrysol.2018.07.008

    Article  Google Scholar 

  30. H.O. Tekin, O. Kilicoglu, The influence of gallium (Ga) additive on nuclear radiation shielding effectiveness of Pd/Mn binary alloys. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152484

    Article  Google Scholar 

  31. H.O. Tekin, M.I. Sayyed, S.A.M. Issa, Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat. Phys. Chem. (2018). https://doi.org/10.1016/j.radphyschem.2018.05.002

    Article  Google Scholar 

  32. H.O. Tekin, MCNP-X Monte Carlo code application for mass attenuation coefficients of concrete at different energies by modeling 3 × 3 inch NaI(Tl) detector and comparison with XCOM and Monte Carlo data. Sci. Technol. Nucl. Install. (2016). https://doi.org/10.1155/2016/6547318

    Article  Google Scholar 

  33. U. Kara, E. Kavaz, S.A.M. Issa, M. Rashad, G. Susoy, A.M.A. Mostafa, N. Yildiz Yorgun, H.O. Tekin, Optical, structural and nuclear radiation shielding properties of Li2B4O7 glasses: effect of boron mineral additive. Appl. Phys. A Mater. Sci. Process. (2020). https://doi.org/10.1007/s00339-020-3446-3

    Article  Google Scholar 

  34. Y.S. Rammah, Influence of Ag2O insertion on alpha, proton and γ-rays safety features of TeO2.ZnO.Na2O glasses: potential use for nuclear medicine applications. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.136

    Article  Google Scholar 

  35. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  36. M. Dong, X. Xue, H. Yang, D. Liu, C. Wang, Z. Li, A novel comprehensive utilization of vanadium slag: as gamma ray shielding material. J. Hazard. Mater. 318, 751–757 (2016)

    Article  Google Scholar 

  37. J. Baalamurugan, V. Ganesh Kumar, S. Chandrasekaran, S. Balasundar, B. Venkatraman, R. Padmapriya, V.K. Bupesh Raja, Utilization of induction furnace steel slag in concrete as coarse aggregate for gamma radiation shielding. J. Hazard. Mater. 369, 561–568 (2019)

    Article  Google Scholar 

  38. A.R. Bahramian, M. Kokabi, Ablation mechanism of polymer layered silicate nanocomposite heat shield. J. Hazard. Mater. 166, 445–454 (2009)

    Article  Google Scholar 

  39. M.J. Berger, J.H. Hubbell, XCOM: photon cross sections database. National Institute of Standards and Technology, Gaithersburg, MD 20899, USA, 1987–1999. Web version 1.2

  40. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997). https://doi.org/10.1016/S0306-4549(97)00003-0

    Article  Google Scholar 

  41. S.A.M. Issa, Y.B. Saddeek, H.O. Tekin, M.I. Sayyed, K.S. Shaaban, Investigations of radiation shielding using Monte Carlo method and elastic properties of PbO-SiO2-B2O3-Na2O glasses. Curr. Appl. Phys. 18, 717–727 (2018). https://doi.org/10.1016/j.cap.2018.02.018

    Article  ADS  Google Scholar 

  42. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM, the stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. B. (2008). https://doi.org/10.1016/j.nimb.2004.01.208.4

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Taif University Researchers Supporting Project number (TURSP-2020/23), Taif University, Taif, Saudi Arabia. The last authors thank the National Research Centre for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Rammah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rammah, Y.S., Tekin, H.O., Issa, S.A.M. et al. On B2O3/Bi2O3/Na2O/Gd2O3 glasses: synthesis, structure, physical characteristics, and gamma-ray attenuation competence. Appl. Phys. A 127, 851 (2021). https://doi.org/10.1007/s00339-021-04995-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04995-8

Keywords

Navigation