Skip to main content
Log in

Study of structural, magnetic, and magnetocaloric properties of Ho1−xCaxMnO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural, magnetic, and magnetocaloric properties of Ho1−xCaxMnO3 (x = 0, 0.1, 0.2, and 0.3) manganites were investigated in depth in this work. The samples were made by using standard solid-state reaction. The calcium-doped samples are formed in orthorhombic crystal structure with Pnma space group, while undoped sample shows hexagonal crystal structure with P63cm space group according to room temperature XRD measurements and Rietveld refinement by using the TOPAS software. The field emission scanning electron microscopy (FESEM) was used to examine the microstructure, and an energy-dispersive X-ray diffractometer (EDX) was used to estimate chemical compositions. At the Curie temperature, all the samples show a second-order magnetic phase transition. It has been discovered that when the amount of calcium doping increases, the Curie temperature increases. The effective magnetic moments (μeff) of HoMnO3, Ho0.9Ca0.1MnO3, Ho0.8Ca0.2MnO3, and Ho0.7Ca0.3MnO3 are 10.71, 10.93, 11.17, and 11.54 μB, respectively, which are equivalent to the theoretical value of 11.45 μB. The magnetic entropy change (− ΔSM) was calculated by using isothermal magnetization versus applied magnetic field. The calculated − ΔSM = 8.9 Jkg−1 K−1 value for undoped HoMnO3 sample at 17.7 K, while with an increase in calcium doping, the − ΔSM value have been drop down from 3.3 to 2.2 Jkg−1 K−1 about 35 K temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.K. Pecharsky, K.A. Gschneidner, Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494 (1997)

    Article  ADS  Google Scholar 

  2. B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, Z.H. Cheng, Recent progress in exploring magnetocaloric materials. Adv. Mater. 21, 4545 (2009)

    Article  Google Scholar 

  3. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, A. Conde, Magnetocaloric effect: From materials research to refrigeration devices. Prog. Mater. Sci. 93, 112 (2018)

    Article  Google Scholar 

  4. J.Y. Law, V. Franco, A. Conde, S.J. Skinner, S. Pramana, Modification of the order of the magnetic phase transition in cobaltites without changing their crystal space group. J. Alloy. Compd. 777, 1080 (2019)

    Article  Google Scholar 

  5. E. Warburg, Magnetische Untersuchungen. Annu. Phys. Chem. 13, 141 (1881)

    Article  Google Scholar 

  6. M.H. Phan, S.C. Yu, N.H. Hur, Excellent magnetocaloric properties of La0.7Ca0.3−xSrxMnO3 (0.05 ⩽ x ⩽ 0.25) single crystals. Appl. Phys. Lett. 86, 72 (2005)

    Article  Google Scholar 

  7. N. Brahiti, M. Abbasi Eskandari, M. Balli, C. Gauvin-Ndiaye, R. Nourafkan, A.M. Tremblay, Analysis of the magnetic and magnetocaloric properties of ALaFeMnO6 (A = Sr, Ba, and Ca) double perovskites. J. Appl. Phys. 127, 113905 (2020)

    Article  ADS  Google Scholar 

  8. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005)

    Article  ADS  Google Scholar 

  9. K. Das, I. Das, Giant enhancement of magnetocaloric effect at room temperature by the formation of nanoparticle of La0.48Ca0.52MnO3 compound. J. Appl. Phys. 119, 093903 (2016)

    Article  ADS  Google Scholar 

  10. P. Zhang, T.L. Phan, S.C. Yu, Magnetocaloric Effect in La0.7Cd0.3MnO3, La0.7Ba0.3MnO3, and Nd0.7Sr0.3MnO3. J. Supercond. Nov. Magn. 25, 2727 (2012)

    Article  Google Scholar 

  11. C.N.R. Rao, B. Raveau (Eds.), Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxide, World scientific, Singapore, 1998.

  12. E. Dagotto, T. Hotta, A. Moreo, Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1 (2001)

    Article  ADS  Google Scholar 

  13. A. Tozri, E. Dhahri, E.K. Hlil, Magnetic transition and magnetic entropy changes of La0.8Pb0.1MnO3 and La0.8Pb0.1Na0.1MnO3. Mater. Lett. 64, 2138 (2010)

    Article  Google Scholar 

  14. K.A. Gschneidner Jr., V.K. Pecharsky, Magnetocaloric materials. Ann. Rev. Mater. Sci. 30, 387 (2000)

    Article  ADS  Google Scholar 

  15. J.B. Goodenough, Localized to Itinerant Electronic Transition in Perovskite Oxides (Springer, New York, 2001)

    Book  Google Scholar 

  16. T.L. Phan, S.G. Min, M.H. Phan, N.D. Ha, N. Chau, S.C. Yu, ESR study of La1–xPbxMnO3 (0.1 ≤ x ≤ 0.5) perovskites. Phys. Status Solidi B 244, 1109 (2007)

    Article  ADS  Google Scholar 

  17. A. Dhahri, E. Dhahri, E.K. Hlil, Large magnetocaloric effect in manganese perovskite La0.67−xBixBa0.33MnO3 near room temperature. RSC Adv. 9, 5530 (2019)

    Article  ADS  Google Scholar 

  18. J. Mira, J. Rivas, L.E. Hueso, F. Rivadulla, M.A. Lopez Quintela, Drop of magnetocaloric effect related to the change from first- to second-order magnetic phase transition in La2/3(Ca1−xSrx)1/3MnO3. J. Appl. Phys. 91, 8903 (2002)

    Article  ADS  Google Scholar 

  19. A. Gómez, E. Chavarriaga, I. Supelano, C.A. Parra, O. Morán, Evaluation of the magnetocaloric response of nano-sized La0.7Ca0.3Mn1-xNixO3 manganites synthesized by auto-combustion method. AIP Adv. 8, 056430 (2018)

    Article  ADS  Google Scholar 

  20. M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)

    Article  ADS  Google Scholar 

  21. M. Balli, B. Roberge, J. Vermette, S. Jandl, P. Fournier, M.M. Gospodinov, Magnetocaloric properties of the hexagonal HoMnO3 single crystal revisited. Physica B 478, 77 (2015)

    Article  ADS  Google Scholar 

  22. P.P. Rout, B.K. Roul, Effect of Ca doping on enhancement of ferroelectricity and magnetism in HoMnO3 multiferroic system. J. Mater. Sci. Mater. Electron. 24, 2493 (2013)

    Article  Google Scholar 

  23. M. Nasira, S. Kumar, N. Patra, D. Bhattacharya, D. Basaula, S. Bhatte, M. Khan, S. Liu, S. Biring, S. Seng, Role of antisite disorder, rare-earth size, and superexchange angle on band gap, curie temperature, and magnetization of R2NiMnO6 double perovskites. ACS Appl. Electron. Mater. 1, 141 (2019)

    Article  Google Scholar 

  24. S.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964)

    Article  ADS  Google Scholar 

  25. M.H. Phan, S.C. Yu, N.H. Hur, Y.H. Yeong, J. Appl. Phys. 96, 1154 (2004)

    Article  ADS  Google Scholar 

  26. A.K. Saw, S. Hunagund, R.L. Hadimani, V. Dayal, Magnetic phase transition, magnetocaloric and magnetotransport properties in Pr0.55Sr0.45MnO3 perovskite manganite. Mater. Today: Proc. 46, 6218 (2021)

    Google Scholar 

  27. D. Mazumdar, K. Das, I. Das, Effect of short-range ferromagnetic interaction on magnetocaloric properties of polycrystalline Eu0.55Sr0.45MnO3 compound. J. Magn. Magn. Mater. 502, 166507 (2020)

    Article  Google Scholar 

  28. A.M. Gomes, F. Garcia, A.P. Guimaraes, M.S. Reis, V.S. Amaral, P.B. Tavares, Magnetocaloric effect of the (Pr, Ca) MnO3 manganite at low temperatures. J. Magn. Magn. Mater. 290, 694 (2005)

    Article  ADS  Google Scholar 

  29. A. Midya, P. Mandal, S. Das, S. Banerjee, L.S. Sharath Chandra, V. Ganesan, S. Roy Barman, Magnetocaloric effect in HoMnO3 crystal. Appl. Phys. Lett. 96, 142514 (2010)

    Article  ADS  Google Scholar 

  30. P. Sande, L.E. Hueso, D.R. Miguens, J. Rivas, F. Rivadulla, M.A. Lopez-Quintela, Large magnetocaloric effect in manganites with charge order. Appl. Phys. Lett. 79, 2040 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science Research Program through the National Research Foundation in Republic of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF contract No. 2020R1I1A3070554). S. Park and Y. Jo acknowledge the support by the KBSI grant (D110200) and Y. Jo also would like to acknowledge KBSI Grant (No. C140210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Park.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, K.P., Lee, E.J., Manawan, M. et al. Study of structural, magnetic, and magnetocaloric properties of Ho1−xCaxMnO3. Appl. Phys. A 127, 842 (2021). https://doi.org/10.1007/s00339-021-04991-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04991-y

Keywords

Navigation