Skip to main content
Log in

Investigations on rGO on silicon-based UV photon detector

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The possibility of using reduced graphene oxide field effect transistor (rGOFET) on a high resistivity silicon as a photon detector in bottom gate FET architecture has been explored in this work. Highly conductive reduced graphene oxide (rGO) is synthesized from graphene oxide (GO) by a hybrid technique using hydroiodic acid (HI) fumes and thermal annealing for 6 h on the substrate itself. The rGOFET device is irradiated from top and bottom at different gate-source voltages ranging between 50 mV and 5 V and a comparison of its performance is done. The fabricated device has shown significant response to photons in the UV range peaking at 256 nm with a responsivity of 0.15 A/W at 5 V when irradiated from top and 0.095 A/W at 5 V when irradiated from bottom. The response time of the device measured is 0.23 s, and recovery time is 0.12 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. C.-H. Liu, Y.-C. Chang, T.B. Norris, Z. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9(4), 273–278 (2014)

    Article  ADS  Google Scholar 

  2. J. Liu, Y. Yin, Yu. Longhai, Y. Shi, Di. Liang, D. Dai, Silicon-graphene conductive photodetector with ultra-high responsivity. Sci. Rep. 7(1), 1–7 (2017)

    Google Scholar 

  3. A. Panda, P. Sarkar, G. Palai, Graphene based effectual photodetector for photonic integrated circuit. Optik 171, 15–19 (2018)

    Article  ADS  Google Scholar 

  4. A. De Sanctis, J.D. Mehew, M.F. Craciun, S. Russo, Graphene-based light sensing: fabrication, characterisation, physical properties and performance. Materials 11(9), 1762 (2018)

    Article  ADS  Google Scholar 

  5. M. Foxe, G. Lopez, I. Childres, R. Jalilian, C. Roecker, J. Boguski, I. Jovanovic, Y.P. Chen. Detection of ionizing radiation using graphene field effect transistors, in 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 90–95. IEEE (2009)

  6. N.-Z. Zhang, M.-K. He, P. Yu, D.-H. Zhou, Improvement of sensitivity of graphene photodetector by creating bandgap structure. Chin. Phys. B 26(11), 116803 (2017)

    Article  ADS  Google Scholar 

  7. J. Wu, Lu. Yanghua, S. Feng, Wu. Zhiqian, S. Lin, Z. Hao, T. Yao, X. Li, H. Zhu, S. Lin, The interaction between quantum dots and graphene: the applications in graphene-based solar cells and photodetectors. Adv. Func. Mater. 28(50), 1804712 (2018)

    Article  Google Scholar 

  8. F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839–843 (2009)

    Article  ADS  Google Scholar 

  9. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013)

    Article  ADS  Google Scholar 

  10. B. Chitara, L.S. Panchakarla, S.B. Krupanidhi, C.N.R. Rao, Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 23(45), 5419–5424 (2011)

    Article  Google Scholar 

  11. S. Salimian, M.E.A. Araghi, Study of the preparation and spectral response of stacked graphene nanoribbon-carbon nanotube-based phototransistors. Carbon 107, 754–764 (2016)

    Article  Google Scholar 

  12. T. Van Tam, S.H. Hur, J.S. Chung, W.M. Choi, Ultraviolet light sensor based on graphene quantum dots/reduced graphene oxide hybrid film. Sensors Actuat. A Phys. 233, 368–373 (2015)

    Article  Google Scholar 

  13. X. Liu, Xu. Tao, Y. Li, Z. Zang, X. Peng, H. Wei, W. Zha, F. Wang, Enhanced X-ray photon response in solution-synthesized CsPbBr 3 nanoparticles wrapped by reduced graphene oxide. Sol. Energy Mater. Sol. Cells 187, 249–254 (2018)

    Article  Google Scholar 

  14. J. Wei, Z. Zang, Y. Zhang, M. Wang, Du. Jihe, X. Tang, Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Opt. Lett. 42(5), 911–914 (2017)

    Article  ADS  Google Scholar 

  15. Y. Ding, X. Guo, D. Kuang, X. Hu, Y. Zhou, Y. He, Z. Zang. Hollow Cu2O nanospheres loaded with MoS2/reduced graphene oxide nanosheets for ppb-level NO2 detection at room temperature. J. Hazardous Mater. 126218 (2021).

  16. H. Huang, J. Zhang, L. Jiang, Z. Zang, Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B. J. Alloys Compd. 718, 112–115 (2017)

    Article  Google Scholar 

  17. C.Y. Foo, H.N. Lim, M.A.B. Mahdi, K.F. Chong, N.M. Huang, High-performance supercapacitor based on three-dimensional hierarchical rGO/nickel cobaltite nanostructures as electrode materials. J. Phys. Chem. C 120(38), 21202–21210 (2016)

    Article  Google Scholar 

  18. W. Zhang, E. Bi, M. Li, L. Gao, Synthesis of Ag/RGO composite as effective conductive ink filler for flexible inkjet printing electronics. Colloids Surf. A 490, 232–240 (2016)

    Article  Google Scholar 

  19. G. Li, L. Liu, Wu. Guan, W. Chen, S. Qin, Yi. Wang, T. Zhang, Self-powered UV–near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction. Small 12(36), 5019–5026 (2016)

    Article  Google Scholar 

  20. B. Chitara, S.B. Krupanidhi, C.N.R. Rao, Solution processed reduced graphene oxide ultraviolet detector. Appl. Phys. Lett. 99(11), 113114 (2011)

    Article  ADS  Google Scholar 

  21. P. Joshna, S.R. Gollu, P.M. Preetam Raj, B.V.V.S.N. Prabhakar Rao, P. Sahatiya, S. Kundu, Plasmonic Ag nanoparticles arbitrated enhanced photodetection in p-NiO/n-rGO heterojunction for future self-powered UV photodetectors. Nanotechnology 30(36), 365201 (2019)

    Article  Google Scholar 

  22. N.T. Shelke, B.R. Karche, Ultraviolet photosensor based on few layered reduced graphene oxide nanosheets. Appl. Surf. Sci. 418, 374–379 (2017)

    Article  ADS  Google Scholar 

  23. Y. Cao, J. Zhu, Xu. Jia, J. He, J.-L. Sun, Y. Wang, Z. Zhao, Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions. Small 10(12), 2345–2351 (2014)

    Article  Google Scholar 

  24. P. Phukan, P.P. Sahu, High performance UV photodetector based on metal-semiconductor-metal structure using TiO2-rGO composite. Opt. Mater. 109, 110330 (2020)

    Article  Google Scholar 

  25. T. Chandrakalavathi, K.R. Peta, R. Jeyalakshmi, Enhanced UV photoresponse with Au nanoparticles incorporated rGO/Si heterostructure. Mater. Res. Exp. 5(2), 025011 (2018)

    Article  Google Scholar 

  26. T. Chandrakalavathi, M. Reddeppa, T. Revathi, P.K. Basivi, S.K. Viswanath, G. Murali, M.-D. Kim, R. Jeyalakshmi, p-Pheneylendiamine functionalized rGO/Si heterostructure Schottky junction for UV photodetectors. Diamond Related Mater. 93, 208–215 (2019)

    Article  ADS  Google Scholar 

  27. P. Deb, J.C. Dhar, Low dark current and high responsivity UV detector based on TiO 2 nanowire/RGO thin film heterostructure. IEEE Trans. Electron Dev. 66(9), 3874–3880 (2019)

    Article  ADS  Google Scholar 

  28. S.W. Howell, I. Ruiz, P.S. Davids, R.K. Harrison, S.W. Smith, M.D. Goldflam, J.B. Martin, N.J. Martinez, T.E. Beechem, Graphene-insulator-semiconductor junction for hybrid photodetection modalities. Sci. Rep. 7(1), 1–9 (2017)

    Article  Google Scholar 

  29. J. Wen, Y. Niu, P. Wang, M. Chen, Wu. Weidong, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, Y. Wang, Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity. Carbon 153, 274–284 (2019)

    Article  Google Scholar 

  30. Y. Cao, H. Yang, Y. Zhao, Y. Zhang, T. Ren, B. Jin, J. He, J.-L. Sun, Fully suspended reduced graphene oxide photodetector with annealing temperature-dependent broad spectral binary photoresponses. ACS Photonics 4(11), 2797–2806 (2017)

    Article  Google Scholar 

  31. G. Shruthi, G. Baishali, V. Radhakrishna, P. Verma, Reducing graphene oxide using hydroiodic acid fumes and low temperature annealing for enhanced electrical conductivity. Graphene Technol. 5(1), 19–25 (2020)

    Article  Google Scholar 

  32. X. An, F. Liu, Y.J. Jung, S. Kar, Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 13(3), 909–916 (2013)

    Article  ADS  Google Scholar 

  33. S. Ghosh, B.K. Sarker, A. Chunder, L. Zhai, S.I. Khondaker, Position dependent photodetector from large area reduced graphene oxide thin films. Appl Phys Lett 96(16), 163109 (2010)

    Article  ADS  Google Scholar 

  34. M.K. Singh, R.K. Pandey, R. Prakash, High-performance photo detector based on hydrothermally grown SnO2 nanowire/reduced graphene oxide (rGO) hybrid material. Org. Electron. 50, 359–366 (2017)

    Article  Google Scholar 

  35. T. Poiroux, M. Vinet, O. Faynot, J. Widiez, J. Lolivier, T. Ernst, B. Previtali, S. Deleonibus, Multiple gate devices: advantages and challenges. Microelectron. Eng. 80, 378–385 (2005)

    Article  Google Scholar 

  36. A. Majumdar, Z. Ren, S.J. Koester, W. Haensch, Undoped-body extremely thin SOI MOSFETs with back gates. IEEE Trans. Electron Devices 56(10), 2270–2276 (2009)

    Article  ADS  Google Scholar 

  37. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  38. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Modern Phys. 81(1), 109 (2009)

    Article  ADS  Google Scholar 

  39. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.-W. Liu, C.H. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017)

    Article  Google Scholar 

  40. A. Abuelgasim, High resistivity Czochralski-silicon using deep level dopant compensation for RF passive devices. PhD diss., University of Southampton (2012).

  41. Y. Liu, C. Pan, J. Wang, Raman spectra of carbon nanotubes and nanofibers prepared by ethanol flames. J. Mater. Sci. 39(3), 1091–1094 (2004)

    Article  ADS  Google Scholar 

  42. N. Shimodaira, A. Masui, Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 92(2), 902–909 (2002)

    Article  ADS  Google Scholar 

  43. M.J. Li, Z. Chen. Graphene field effect transistor for radiation detection. U.S. Patent 9,508,885, issued November 29, 2016.

  44. S. Mao, Yu. Kehan, S. Cui, Z. Bo, Lu. Ganhua, J. Chen, A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications. Nanoscale 3(7), 2849–2853 (2011)

    Article  ADS  Google Scholar 

  45. J.-I. Fujita, R. Ueki, T. Nishijima, Y. Miyazawa, Characteristics of graphene FET directly transformed from a resist pattern through interfacial graphitization of liquid gallium. Microelectron. Eng. 88(8), 2524–2526 (2011)

    Article  Google Scholar 

  46. P. Sehrawat, S.S. Islam, P. Mishra, S. Ahmad, Reduced graphene oxide (rGO) based wideband optical sensor and the role of temperature, defect states and quantum efficiency. Sci. Rep. 8(1), 1–13 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Indian Space Research Organization (ISRO), Govt. of India for funding this research work through RESPOND grant. They would also like to thank Centre for Nano Science and Engineering, Indian Institute of Science for the material characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Baishali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anshika, G., Shruthi, G., Baishali, G. et al. Investigations on rGO on silicon-based UV photon detector. Appl. Phys. A 127, 863 (2021). https://doi.org/10.1007/s00339-021-04986-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04986-9

Keywords

Navigation