Skip to main content

Advertisement

Log in

Synthesis of layered compound from walnut shell by template method TiO2/CdS/CoP application of photocatalyst in efficient hydrogen productions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The photocatalytic H2 production requires catalysts with specific and optimized crystal morphology, surface area and interfacial bonding. In this work, we used a template based on walnut shell biomass to prevent particle aggregation. Using this approach, we obtained nano-TiO2 with a brookite structure. CdS nanoparticles were then grown in situ on the TiO2 surface. This material was then combined with the inexpensive non-noble-metal cocatalyst (CoP) for consequent H2 production. During the calcination and TiO2 crystallization steps, the walnut shell template was removed, and the nonmetallic components of this composite catalyst were doped with C and/or P. The resulting TiO2/CdS/CoP composite photocatalyst demonstrated excellent activity during the H2 production reaction under the simulated sunlight, which was equal to 35.9 mmol/g after 2.5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H-2 evolution. Appl. Catal. B Environ. An Int. J. Devot. Catal. Sci. Appl. (2018)

  2. M.S. Cergel, F. Atay, The role of the annealing process in different gas environments on the degradation of the methylene blue organic pollutant by brookite-TiO2 photocatalyst. Ionics 25, 3823–3836 (2019)

    Article  Google Scholar 

  3. Y. Chang, Y. Xuan, H. Quan, H. Zhang, J. Cao, Hydrogen treated Au/3DOM-TiO2 with promoted photocatalytic efficiency for hydrogen evolution from water splitting. Chem. Eng. J. 382, 122869 (2019)

    Article  Google Scholar 

  4. X. Bao, X. Wang, X. Li, L. Qin, S.Z. Kang, CuWO4-x nanoparticles incorporated brookite TiO2 porous nanospheres: preparation and dramatic photocatalytic activity for light driven H2 generation. Mater. Res. Bull. 136, 111171 (2021)

    Article  Google Scholar 

  5. B. Weng, K.Q. Lu, Z. Tang, H.M. Chen, Y.J. Xu, Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun. 9, 1543 (2018)

    Article  ADS  Google Scholar 

  6. S. Sun, P. Gao, Y. Yang, P. Yang, Y. Chen, Y. Wang, N-Doped TiO2 Nanobelts with Coexposed (001) and (101) facets and their highly efficient visible-light-driven photocatalytic hydrogen production. Acs Appl. Mater. Interfaces. (2016) 18126–18131

  7. H. El-Maghrabi, A. Nada, F.S. Soliman, Y.M.M.M. Moustafa, A.S. Amin, One pot environmental friendly nanocomposite synthesis of novel TiO 2 -nanotubes on graphene sheets as effective photocatalyst. Egypt. J. Pet. 25, 575–584 (2017)

    Article  Google Scholar 

  8. G. Cheng, M. Zhang, C. Han, Y. Liang, K. Zhao, Achieving solar-to-hydrogen evolution promotion using TiO2 nanoparticles and an unanchored Cu co-catalyst. Mater. Res. Bull. 129, 110891 (2020)

    Article  Google Scholar 

  9. N.S. Kozhevnikova, E.S. Ulyanova, E.V. Shalaeva, D.A. Zamyatin, A. Vorokh, Low-temperature Sol-Gel synthesis and photoactivity of nanocrystalline TiO2 with the Anatase/Brookite structure and an amorphous component. Kinet. Catal. 60, 325–336 (2019)

    Article  Google Scholar 

  10. S. Nishioka, M. Kobayashi, D. Lu, M. Kakihana, K. Maeda, Selective synthesis and photocatalytic oxygen evolution activities of tantalum/nitrogen-codoped anatase, brookite and rutile titanium dioxide. Bull. Chem. Soc. Japan, (2019)

  11. T.M. Khedr, S.M. El-Sheikh, A.A. Ismail, D.W. Bahnemann, Photodegradation of 4-aminoantipyrine over Nano-Titania Heterojunctions using solar and LED irradiation sources. J. Environ. Chem. Eng., 7 (2018)

  12. T. Khedr, S. El-Sheikh, A. Ismail, E. Kowalska, D. Bahnemann, Photodegradation of Microcystin-LR using visible light-activated C/N-co-modified mesoporous TiO2 photocatalyst. Materials, 12 (2019)

  13. B. Dong, M. Yang, F. Wang, L. Hao, X. Xu, G. Wang, S. Agathopoulos, Novel fabrication processing of porous alumina/mullite membrane supports by combining direct foaming, sol-gel, and tape-casting methods. Mater. Lett. 240, 140–143 (2019)

    Article  Google Scholar 

  14. M.K. Uddin, A. Nasar, Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations. Sci. Rep., 10 (2020).

  15. U.S.D. Agriculture, USDA national nutrient database for standard reference [Internet], (2012).

  16. B. Karbowska, E. Konowa, W. Zembrzuski, G. Milczarek, Sorption of thallium on walnut shells and its enhancement by the lignosulfonate-stabilized gold colloid. Pol. J. Environ. Stud. (2019)

  17. E. Pehlivan, T. Altun, Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J. Hazard. Mater. 155, 378–384 (2008)

    Article  Google Scholar 

  18. G. Liu, C. Han, M. Pelaez, D. Zhu, S. Liao, V. Likodimos, A.G. Kontos, P. Falaras, D.D. Dionysiou, Enhanced visible light photocatalytic activity of CN-codoped TiO2 films for the degradation of microcystin-LR. J. Mol. Catal. A Chem. 372, 58–65 (2013)

    Article  Google Scholar 

  19. S.M. El-Sheikh, T.M. Khedr, G. Zhang, V. Vogiazi, A.A. Ismail, K. O’Shea, D.D. Dionysiou, Tailored synthesis of anatase–brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV–Vis light. Chem. Eng. J. (2016) S1385894716306209

  20. Y. Yang, A.J. Liu, L.H. Li, H.J. Chen, M.J. Wang, Effects of fencing on vegetation community characteristics and soil properties of a typical steppe in Inner Mongolia, Acta Prataculturae Sinica, (2016).

  21. Q. Wang, T. Hisatomi, Y. Suzuki, Z. Pan, J. Seo, M. Katayama, T. Minegishi, H. Nishiyama, T. Takata, K. Seki, A. Kudo, T. Yamada, K. Domen, Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J. Am. Chem. Soc. 139, 1675–1683 (2017)

    Article  Google Scholar 

  22. J. Zhang, S.Z. Qiao, L. Qi, J. Yu, Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys. Chem. Chem. Phys. 15, 12088–12094 (2013)

    Article  Google Scholar 

  23. J. Yu, Y. Yu, Z. Peng, X. Wei, C. Bei, Morphology-dependent photocatalytic H2-production activity of CdS. Appl. Catal. B Environ. 156–157, 184–191 (2014)

    Article  Google Scholar 

  24. D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, S.J. Su, Modulation of exciton generation in organic active planar pn Heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters. Adv. Mater. 28, 6758–6765 (2016)

    Article  Google Scholar 

  25. D. Chen, G. Xie, X. Cai, M. Liu, Y. Cao, S.J. Su, Fluorescent organic planar pn heterojunction light‐emitting diodes with simplified structure, extremely low driving voltage, and high efficiency. Adv. Mater. 28 (2016) n/a-n/a

  26. X.F. Gao, W.T. Sun, Z.D. Hu, G. Ai, Y.L. Zhang, S. Feng, F. Li, L.M. Peng, An efficient method to form Heterojunction CdS/TiO2 Photoelectrodes using highly ordered TiO2 nanotube array films. J. Phys. Chem. C 113, 20481–20485 (2009)

    Article  Google Scholar 

  27. B. Han, S. Liu, Z. Nan, Y.J. Xu, Z.R. Tang, One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light. Appl. Catal. B 202, 298–304 (2016)

    Article  Google Scholar 

  28. N. Zhang, S. Liu, Y.J. Xu, Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst. Nanoscale 4, 2227–2238 (2012)

    Article  ADS  Google Scholar 

  29. L. Qi, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys. Chem. Chem. Phys. Pccp, 13 (2011)

  30. C. Li, R. Yuan, R. Han, R. Jiang, R. Shangguan, TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. Int. J. Hydrogen Energy 35, 7073–7079 (2010)

    Article  Google Scholar 

  31. J.S. Jang, H.G. Kim, P.H. Borse, J.S. Lee, Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation. Int. J. Hydrogen Energy 32, 4786–4791 (2007)

    Article  Google Scholar 

  32. H. Cheng, X.J. Lv, S. Cao, Z.Y. Zhao, Y. Chen, W.F. Fu, Robustly photogenerating H2 in water using FeP/CdS catalyst under solar irradiation. Sci. Rep. 6, 19846 (2016)

    Article  ADS  Google Scholar 

  33. B. Kwa, A. Pw, B. Jz, L.A. Chang, A. Xd, A. Jw, A. Gm, A. Kx, A. Jh, A. Zl, Synthesis of hollow core-shell [emailprotected] 2 /Ni 2 P photocatalyst for enhancing hydrogen evolution and degradation of MB. Chem. Eng. J. 360, 221–230 (2019)

    Article  Google Scholar 

  34. L. Chang, K. Wu, G. Meng, J. Wu, X. Guo, Explore the properties and photocatalytic performance of iron-doped g-C 3 N 4 nanosheets decorated with Ni 2 P. Mol. Catal. 437, 80–88 (2017)

    Article  Google Scholar 

  35. D. Zheng, X. Cao, X. Wang, Precise formation of a hollow carbon nitride structure with a janus surface to promote water splitting by Photoredox Catalysis. Angew. Chem. Int. Ed. Engl. 55, 11512–11516 (2016)

    Article  Google Scholar 

  36. M. Xing, B. Qiu, M. Du, Q. Zhu, L. Wang, J. Zhang, Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution. Adv. Funct. Mater. 27, 1702624.1702621-1702624.1702610 (2017)

    Google Scholar 

  37. A. Li, X. Chang, Z. Huang, C. Li, Y. Wei, L. Zhang, T. Wang, J. Gong, Innentitelbild: thin heterojunctions and spatially separated cocatalysts to simultaneously reduce bulk and surface recombination in photocatalysts (Angew. Chem. 44/2016). Angew. Chem. Int. Ed. Engl. 128, 13818–13818 (2016)

    Article  Google Scholar 

  38. B. Qiu, Q. Zhu, M. Du, L. Fan, M. Xing, J. Zhang, Efficient solar light harvesting CdS/Co9 S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew. Chem. 129, 2684 (2017)

    Article  Google Scholar 

  39. L. Jiao, Y.X. Zhou, H.L. Jiang, Metal-Organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 7, 1690–1695 (2016)

    Article  Google Scholar 

  40. Z. Yan, X. Yu, A. Han, P. Xu, P. Du, Noble-metal-free Ni(OH)2-Modified CdS/reduced graphene oxide nanocomposite with enhanced photocatalytic activity for hydrogen production under visible light irradiation. J. Phys. Chem. C 118, 22896–22903 (2014)

    Article  Google Scholar 

  41. S.C. Gondhalekar, S.R. Shukla, Biosorption of cadmium metal ions on raw and chemically modified walnut shells. Environ. Prog. Sustain. Energy 34 (2015)

  42. K. Wu, X. Dong, J. Zhu, P. Wu, X. Guo, Designing biomimetic porous celery: TiO2/ZnO nanocomposite for enhanced CO2 photoreduction. J. Mater. Sci. 53 (2018)

  43. B. Qiu, Q. Zhu, M. Du, L. Fan, M. Xing, J. Zhang, Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew. Chem. Int. Ed. 56, 2684–2688 (2017)

    Article  Google Scholar 

  44. H.-L. Jiang, L. Jiao, Y.-X. Zhou, Metal-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. (2016)

Download references

Acknowledgements

This work was supported financially by Open subject of Key Laboratory of Materials-Oriented Chemical Engineering at Universities of Education Department of Xinjiang Uygur Autonomous Region (20201001). Cross projects of Nanyang Institute of Technology (330078) and students innovation project of Nanyang Institute of technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingke Li or Zhiyong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Peng, X., Ma, Y. et al. Synthesis of layered compound from walnut shell by template method TiO2/CdS/CoP application of photocatalyst in efficient hydrogen productions. Appl. Phys. A 127, 906 (2021). https://doi.org/10.1007/s00339-021-04981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04981-0

Keywords

Navigation