Skip to main content
Log in

Highly textured (100)-oriented AlN thin films using thermal atomic layer deposition and their electrical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Aluminum nitride (AlN) thin films are deposited on p-type silicon wafers using atomic layer deposition (ALD) techniques. Tris(dimethylamido) aluminum (TDMAA) and ammonia (NH3) are used as aluminum and nitrogen sources, respectively, and 500 cycles of aluminum and ammonia precursors are used to achieve about 80-nm-thick AlN film. The X-ray diffractogram showed highly textured (100) AlN thin film. Atomic force microscopic images showed smooth films with average and RMS roughnesses ~ 0.30 ± 0.05 nm and 0.39 ± 0.05 nm, respectively. The current–voltage (I–V), resistivity, and capacitance–voltage (C–V) measurements substantiate that deposited AlN films are moderately resistive together with large bandgap ~ 5.8 eV. Thus, using TDMAA as Al precursor, high-quality thin films can be realized using thermal ALD, suitable for high-power electronic and piezoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References:

  1. L. Bo, C. Xiao, C. Hualin, Surface acoustic wave devices for sensor applications. J. Semicond. 37, 021001–021009 (2016). https://doi.org/10.1088/1674-4926/37/2/021001

    Article  ADS  Google Scholar 

  2. R. Weigel, D.P. Morgan, J.M. Owens, A. Ballato, K.M. Lakin, K.Y. Hashimoto, C.C.W. Ruppel, Microwave acoustic materials, devices, and applications. IEEE Trans. Microw. Theory Tech. 50, 738–749 (2002). https://doi.org/10.1109/22.989958

    Article  ADS  Google Scholar 

  3. V. Mortet, A. Soltani, A. Talbi, J. Gerbedoen, N. Bourzgui, High performance AlN-based surface acoustic wave sensors on TiN on ( 100 ) Silicon substrate, in: Ieee, (2015): pp. 1–3. https://doi.org/10.1109/GSMM.2015.7175461.

  4. H. Van Bui, F.B. Wiggers, A. Gupta, M.D. Nguyen, A.A.I. Aarnink, M.P. de Jong, A.Y. Kovalgin, Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 33 01A111–6. (2015) https://doi.org/10.1116/1.4898434.

  5. K.D. Chabak, D.E. Walker, M.R. Johnson, A. Crespo, A.M. Dabiran, D.J. Smith, A.M. Wowchak, S.K. Tetlak, M. Kossler, J.K. Gillespie, R.C. Fitch, M. Trejo, High-performance AlN/GaN HEMTs on sapphire substrate with an oxidized gate insulator. IEEE Electron Device Lett. 32, 1677–1679 (2011). https://doi.org/10.1109/LED.2011.2167952

    Article  ADS  Google Scholar 

  6. A.M. Dabiran, A.M. Wowchak, A. Osinsky, J. Xie, B. Hertog, B. Cui, D.C. Look, P.P. Chow, Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures. Appl. Phys. Lett. 93, 082111 (2008). https://doi.org/10.1063/1.2970991

    Article  ADS  Google Scholar 

  7. Z. Chen, S. Newman, D. Brown, R. Chung, S. Keller, U.K. Mishra, S.P. Denbaars, S. Nakamura, High quality AlN grown on SiC by metal organic chemical vapor deposition. Appl. Phys. Lett. 93, 191906 (2008). https://doi.org/10.1063/1.2988323

    Article  ADS  Google Scholar 

  8. G. Radtke, M. Couillard, G.A. Botton, D. Zhu, C.J. Humphreys, Structure and chemistry of the Si(111)/AlN interface. Appl. Phys. Lett. 100, 011910 (2012). https://doi.org/10.1063/1.3674984

    Article  ADS  Google Scholar 

  9. Y. Taniyasu, M. Kasu, T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325–328 (2006). https://doi.org/10.1038/nature04760

    Article  ADS  Google Scholar 

  10. C.R. Miskys, J.A. Garrido, C.E. Nebel, M. Hermann, O. Ambacher, M. Eickhoff, M. Stutzmann, AlN/diamond heterojunction diodes. Appl. Phys. Lett. 82, 290–292 (2003). https://doi.org/10.1063/1.1532545

    Article  ADS  Google Scholar 

  11. L.W. Yin, Y. Bando, Y.C. Zhu, M. Sen Li, Y.B. Li, D. Golberg, Growth and field emission of hierarchical single-crystalline wurtzite AIN nanoarchitectures, Adv. Mater. 17 110–114. (2005) https://doi.org/10.1002/adma.200400504.

  12. N. Sinha, G.E. Wabiszewski, R. Mahameed, V.V. Felmetsger, S.M. Tanner, R.W. Carpick, G. Piazza, Piezoelectric aluminum nitride nanoelectromechanical actuators. Appl. Phys. Lett. 95, 053106 (2009). https://doi.org/10.1063/1.3194148

    Article  ADS  Google Scholar 

  13. R.B. Karabalin, M.H. Matheny, X.L. Feng, E. Defa, G. Le Rhun, C. Marcoux, S. Hentz, P. Andreucci, M.L. Roukes, Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films. Appl. Phys. Lett. 95, 103111 (2009). https://doi.org/10.1063/1.3216586

    Article  ADS  Google Scholar 

  14. P. Ivaldi, J. Abergel, G. Arndt, P. Robert, P. Andreucci, H. Blanc, S. Hentz, E. Defay, 50 nm thick AlN resonant micro-cantilever for gas sensing application, 2010 IEEE Int. Freq. Control Symp. FCS 2010(1), 81–84 (2010). https://doi.org/10.1109/FREQ.2010.5556370

    Article  Google Scholar 

  15. Z. Zhou, J. Zhao, Y. Chen, P.V.R. Schleyer, Z. Chen, Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors. Nanotechnology 18, 424023 (2007). https://doi.org/10.1088/0957-4484/18/42/424023

    Article  Google Scholar 

  16. Q. Wu, J. Yan, L. Zhang, X. Chen, T. Wei, Y. Li, Z. Liu, X. Wei, Y. Zhang, J. Wang, J. Li, Growth mechanism of AlN on hexagonal BN/sapphire substrate by metal–organic chemical vapor deposition. CrystEngComm 19, 5849–5856 (2017). https://doi.org/10.1039/C7CE01064H

    Article  Google Scholar 

  17. S. Tamariz, D. Martin, N. Grandjean, AlN grown on Si(1 1 1) by ammonia-molecular beam epitaxy in the 900–1200 °C temperature range. J. Cryst. Growth. 476, 58–63 (2017). https://doi.org/10.1016/j.jcrysgro.2017.08.006

    Article  ADS  Google Scholar 

  18. H. Van Bui, M.D. Nguyen, F.B. Wiggers, A.A.I. Aarnink, M.P. de Jong, A.Y. Kovalgin, Self-limiting growth and thickness- and temperature- dependence of optical constants of ALD AlN thin films. ECS J. Solid State Sci. Technol. 3, P101–P106 (2014). https://doi.org/10.1149/2.020404jss

    Article  Google Scholar 

  19. M. Alevli, C. Ozgit, I. Donmez, N. Biyikli, The influence of N2/H2 and ammonia N source materials on optical and structural properties of AlN films grown by plasma enhanced atomic layer deposition. J. Cryst. Growth. 335, 51–57 (2011). https://doi.org/10.1016/j.jcrysgro.2011.09.003

    Article  ADS  Google Scholar 

  20. M. Bosund, T. Sajavaara, M. Laitinen, T. Huhtio, M. Putkonen, V.M. Airaksinen, H. Lipsanen, Properties of AlN grown by plasma enhanced atomic layer deposition. Appl. Surf. Sci. 257, 7827–7830 (2011). https://doi.org/10.1016/j.apsusc.2011.04.037

    Article  ADS  Google Scholar 

  21. M. Alevli, C. Ozgit, I. Donmez, N. Biyikli, Structural properties of AlN films deposited by plasma-enhanced atomic layer deposition at different growth temperatures. Phys. Status Solidi. 209, 266–271 (2012). https://doi.org/10.1002/pssa.201127430

    Article  ADS  Google Scholar 

  22. C. Ozgit, I. Donmez, M. Alevli, N. Biyikli, Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition. Thin Solid Films 520, 2750–2755 (2012). https://doi.org/10.1016/j.tsf.2011.11.081

    Article  ADS  Google Scholar 

  23. P. Mattila, M. Bosund, T. Huhtio, H. Lipsanen, M. Sopanen, Comparison of ammonia plasma and AlN passivation by plasma-enhanced atomic layer deposition. J. Appl. Phys. 111, 063511 (2012). https://doi.org/10.1063/1.3694798

    Article  ADS  Google Scholar 

  24. M. Leskelä, M. Ritala, Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 409, 138–146 (2002). https://doi.org/10.1016/S0040-6090(02)00117-7

    Article  ADS  Google Scholar 

  25. V. Miikkulainen, M. Leskelä, M. Ritala, R.L. Puurunen, Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 113, 021301 (2013). https://doi.org/10.1063/1.4757907

    Article  ADS  Google Scholar 

  26. J. Jokinen, P. Haussalo, J. Keinonen, M. Ritala, D. Riihelä, M. Leskelä, Analysis of AlN thin films by combining TOF-ERDA and NRB techniques. Thin Solid Films 289, 159–165 (1996). https://doi.org/10.1016/S0040-6090(96)08927-4

    Article  ADS  Google Scholar 

  27. J.S.B.G. Liu, E.W. Deguns, L. Lecordier, G. Sundaram, Atomic Layer DEposition of AlN with Tris(Dimethylamido)aluminium and NH3. ECS Trans. 41, 219–225 (2011)

    Article  Google Scholar 

  28. M. Asif Khan, J.N. Kuznia, R.A. Skogman, D.T. Olson, M. Mac Millan, W.J. Choyke, Low pressure metalorganic chemical vapor deposition of AIN over sapphire substrates, Appl. Phys. Lett. 61 (1992) 2539–2541. https://doi.org/10.1063/1.108144.

  29. S.C. Buttera, D.J. Mandia, S.T. Barry, Tris(dimethylamido)aluminum(III): An overlooked atomic layer deposition precursor, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 35 (2017) 01B128. https://doi.org/10.1116/1.4972469.

  30. J.X. Zhang, H. Cheng, Y.Z. Chen, A. Uddin, S. Yuan, S.J. Geng, S. Zhang, Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering. Surf. Coatings Technol. 198, 68–73 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.075

    Article  Google Scholar 

  31. X.-H. Xu, H.-S. Wu, C.-J. Zhang, Z.-H. Jin, Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering. Thin Solid Films 388, 62–67 (2001). https://doi.org/10.1016/S0040-6090(00)01914-3

    Article  ADS  Google Scholar 

  32. H. Chaurasia, S.K. Tripathi, K. Bilgaiyan, A. Pandey, K. Mukhopadhyay, K. Agarwal, N.E. Prasad, Preparation and properties of AlN (aluminum nitride) powder/thin films by single source precursor. New J. Chem. 43, 1900–1909 (2019). https://doi.org/10.1039/C8NJ04594A

    Article  Google Scholar 

  33. X. Chen, G. Wu, D. Bao, Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications, Appl. Phys. Lett. 93 093501. (2008) https://doi.org/10.1063/1.2978158.

  34. X. Chen, G. Wu, P. Jiang, W. Liu, D. Bao, Colossal resistance switching effect in Pt/ spinel -MgZnO/Pt devices for nonvolatile memory applications. Appl. Phys. Lett. 94, 033501 (2009). https://doi.org/10.1063/1.3073858

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author Ambesh Dixit highly acknowledges funding agency ISRO, Govt. of India, through project # ISRO/RES/3/640 and SERB, DST, Govt. of India, CRG/2018/001931 for carrying out this work. Authors also acknowledge Dr. S. P. Tiwari, for providing us thermal ALD system to deposit AlN thin films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambesh Dixit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, C., Dixit, A. Highly textured (100)-oriented AlN thin films using thermal atomic layer deposition and their electrical properties. Appl. Phys. A 127, 862 (2021). https://doi.org/10.1007/s00339-021-04961-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04961-4

Keywords

Navigation