Skip to main content

CO2 sensing properties of WO3 powder: experimental and theoretical studies


Tungsten oxide (WO3) powders were obtained in this work by both wet chemical synthesis and homogeneous precipitation with ultrasound-assisted radiation methods. Experimental and theoretical investigations were performed to study the effect of the synthesis method and molarity concentration on the structural, optical, electric, and gas sensing properties of WO3. X-ray powder diffraction and Raman spectroscopy confirmed the presence of the monoclinic γ-phase. Rietveld refinement and size/strain calculations were done to perform a complete powder diffraction data analysis. The bandgap was calculated based on UV–Visible Diffuse Reflectance Spectroscopy data, resulting in 2.55 and 2.58 eV for the prepared samples by wet chemical and homogeneous precipitation methods, respectively. These experimental measurements were explained by first-principles total energy calculations, and the structural and electric properties of WO3 (002) surface were determined. Five atomic models were built with the purpose of determining the most stable structure of this surface with different oxygen terminations. Sensing tests were carried out for all the WO3 samples when interacting with carbon dioxide (CO2) molecules to analyze their performance as gas detecting devices. Parameters such as the sensing response, surface resistance behavior and response/recovery times were investigated in detail. Experimental tests confirmed that the maximum sensing response is obtained at 500 ppm of CO2, when operated at 300 °C. Based on the characterizations and gas sensing results, a CO2 gas sensing mechanism of WO3 was proposed and discussed in this work. Finally, the competitive properties of WO3 as a semiconductor-based gas sensor for CO2 detection were confirmed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data Availability

The data presented in this study are openly available in Lozano-Rosas, Ricardo (2021), “Rietveld Refinement WO3 powders (MAUD),” Mendeley Data, V1,


  1. 1.

    B.F. Bessac, S.E. Jordt, Proc. Am. Thorac. Soc. 7, 269 (2010)

    Google Scholar 

  2. 2.

    J.F. Li, O.W.H. Wai, Y.S. Li, J.M. Zhan, Y.A. Ho, J. Li, E. Lam, Build. Environ. 45, 2644 (2010)

    Google Scholar 

  3. 3.

    A. Mohmmed, Z. Li, A. Olushola Arowolo, H. Su, X. Deng, O. Najmuddin, Y. Zhang, Resour. Conserv. Recycl. 148, 157 (2019)

    Google Scholar 

  4. 4.

    C. McGlade, P. Ekins, Nature 517, 187 (2015)

    ADS  Google Scholar 

  5. 5.

    M. Goldoni, M. Corradi, P. Mozzoni, G. Folesani, R. Alinovi, S. Pinelli, R. Andreoli, D. Pigini, R. Tillo, A. Filetti, C. Garavelli, A. Mutti, J. Breath Res. 7, 017101 (2013)

    ADS  Google Scholar 

  6. 6.

    B. Buszewski, M. Kesy, T. Ligor, A. Amann, Biomed. Chromatogr. 288, 278 (2008)

    Google Scholar 

  7. 7.

    S. Sivaramakrishnan, R. Rajamani, C.S. Smith, K.A. McGee, K.R. Mann, N. Yamashita, Sensors Actuators. B Chem. 132, 296 (2008)

    Google Scholar 

  8. 8.

    Y.M. Hunge, A.A. Yadav, S.B. Kulkarni, V.L. Mathe, Sensors Actuators. B Chem. 274, 1 (2018)

    Google Scholar 

  9. 9.

    A. Marsal, G. Dezanneau, A. Cornet, J.R. Morante, Sensors Actuators. B Chem. 95, 266 (2003)

    Google Scholar 

  10. 10.

    A. Chapelle, I. El Younsi, S. Vitale, Y. Thimont, T. Nelis, L. Presmanes, A. Barnabé, P. Tailhades, Sensors Actuators. B Chem. 204, 407 (2014)

    Google Scholar 

  11. 11.

    X. Fan, K. Elgammal, A.D. Smith, M. Östling, A. Delin, M.C. Lemme, F. Niklaus, Carbon N. Y. 127, 576 (2018)

    Google Scholar 

  12. 12.

    R.U. Mene, M.P. Mahabole, R.S. Khairnar, Radiat. Phys. Chem. 80, 682 (2011)

    ADS  Google Scholar 

  13. 13.

    C.R. Michel, Sensors Actuators. B Chem. 147, 635 (2010)

    Google Scholar 

  14. 14.

    S.F. Hashemi Karouei, H. Milani Moghaddam, Appl. Surf. Sci. 479, 1029 (2019)

    ADS  Google Scholar 

  15. 15.

    A.A. Rashid, S. Nor Hayati, C.S.D. Bien, W.Y. Lee, A.S. Muhammad, Appl. Mech. Mater. 431, 37 (2013)

    Google Scholar 

  16. 16.

    B. T. Sone, S. S. Nkosi, M. M. Nkosi, E. Coetsee-Hugo, H. C. Swart, and M. Maaza, AIP Conf. Proc. 1962, (2018).

  17. 17.

    C.C. Mardare, A.W. Hassel, Phys. Status Solidi Appl. Mater. Sci. 216, 1 (2019)

    Google Scholar 

  18. 18.

    D.B. Migas, V.L. Shaposhnikov, V.N. Rodin, V.E. Borisenko, J. Appl. Phys. 108, 093714 (2010)

    ADS  Google Scholar 

  19. 19.

    R. Diehl, G. Brandt, E. Salje, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 34, 1105 (1978)

    Google Scholar 

  20. 20.

    S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Güell, M. Kumar, K. Awasthi, Sensors Actuators. B Chem. 292, 24 (2019)

    Google Scholar 

  21. 21.

    R.L. van der Wal, G.M. Berger, M.J. Kulis, G.W. Hunter, J.C. Xu, L. Evans, Sensors 9, 7866 (2009)

    ADS  Google Scholar 

  22. 22.

    U. P. M. Ashik, S. Kudo, and J. Hayashi, An Overview of Metal Oxide Nanostructures (Elsevier Ltd., 2018).

  23. 23.

    S. Thiagarajan, A. Sanmugam, and D. Vikraman, Recent Appl. Sol-Gel Synth. 1 (2017).

  24. 24.

    R. T. Sataloff, M. M. Johns, and K. M. Kost, Sonochemistry and Sonoluminescence (Kluwer Academic Publishers, 1999).

  25. 25.

    J. Šubrt, V. Štengl, S. Bakardjieva, L. Szatmary, Powder Technol. 169, 33 (2006)

    Google Scholar 

  26. 26.

    H. Qin, X. Tan, W. Huang, J. Jiang, H. Jiang, Ceram. Int. 41, 11598 (2015)

    Google Scholar 

  27. 27.

    V. Stengl, J. Subrt, P. Bezdicka, M. Marilokova, S. Bakardijieva 91, 90 (2003)

    Google Scholar 

  28. 28.

    S.J. Patil, A.V. Patil, C.G. Dighavkar, K.S. Thakare, R.Y. Borase, S.J. Nandre, N.G. Deshpande, R.R. Ahire, Front. Mater. Sci. 9, 14 (2015)

    Google Scholar 

  29. 29.

    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)

    ADS  Google Scholar 

  30. 30.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  31. 31.

    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    ADS  Google Scholar 

  32. 32.

    M. Hu, J. Zhang, W. D. Wang, and Y. X. Qin, Chinese Phys. B 20, (2011).

  33. 33.

    M.J.S. Spencer, A. Hung, I.K. Snook, I. Yarovsky, Surf. Sci. 513, 389 (2002)

    ADS  Google Scholar 

  34. 34.

    F. Sánchez-Ochoa, G.H. Cocoletzi, G. Canto, Microporous Mesoporous Mater. 249, 111 (2017)

    Google Scholar 

  35. 35.

    C.M. Ramos-Castillo, F. Sánchez-Ochoa, J. González-Sánchez, A. Tapia, G. Canto, Int. J. Hydrogen Energy 44, 21936 (2019)

    Google Scholar 

  36. 36.

    S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)

    ADS  Google Scholar 

  37. 37.

    L. Bengtsson, Phys. Rev. B-Condens. Matter Mater. Phys. 59, 12301 (1999)

    ADS  Google Scholar 

  38. 38.

    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Google Scholar 

  39. 39.

    A. Ito, Y. Morishita, Mater. Lett. 258, 126817 (2020)

    Google Scholar 

  40. 40.

    D. Meng, T. Yamazaki, Y. Shen, Z. Liu, T. Kikuta, Appl. Surf. Sci. 256, 1050 (2009)

    ADS  Google Scholar 

  41. 41.

    I.M. Szilágyi, S. Saukko, J. Mizsei, A.L. Tóth, J. Madarász, G. Pokol, Solid State Sci. 12, 1857 (2010)

    ADS  Google Scholar 

  42. 42.

    S. Adhikari, D. Sarkar, H.S. Maiti, Mater. Res. Bull. 49, 325 (2014)

    Google Scholar 

  43. 43.

    T. Ungár, Scr. Mater. 51, 777 (2004)

    Google Scholar 

  44. 44.

    R. Zsigmondy, P. Scherrer, Kolloidchem. Ein Lehrb. 277, 387 (1912)

    Google Scholar 

  45. 45.

    A. Monshi, M.R. Foroughi, M.R. Monshi, World J. Nano Sci. Eng. 02, 154 (2012)

    ADS  Google Scholar 

  46. 46.

    C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Sensors Actuators B. Chem. 3, 147 (1991)

    Google Scholar 

  47. 47.

    L.G. Teoh, Y.M. Hon, J. Shieh, W.H. Lai, M.H. Hon, Sensors Actuators. B Chem. 96, 219 (2003)

    Google Scholar 

  48. 48.

    V. Mote, Y. Purushotham, B. Dole, J. Theor. Appl. Phys. 6, 2 (2012)

    Google Scholar 

  49. 49.

    G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956)

    ADS  Google Scholar 

  50. 50.

    M. Epifani, E. Comini, R. Díaz, T. Andreu, A. Genc, J. Arbiol, P. Siciliano, G. Faglia, J.R. Morante, A.C.S. Appl, Mater. Interfaces 6, 16808 (2014)

    Google Scholar 

  51. 51.

    A. Renitta, K. Vijayalakshmi, Catal. Commun. 73, 58 (2016)

    Google Scholar 

  52. 52.

    T. Singh, R. Müller, J. Singh, S. Mathur, Appl. Surf. Sci. 347, 448 (2015)

    ADS  Google Scholar 

  53. 53.

    R.F. Garcia-Sanchez, T. Ahmido, D. Casimir, S. Baliga, P. Misra, J. Phys. Chem. A 117, 13825 (2013)

    Google Scholar 

  54. 54.

    D. Gazzoli, M. Valigi, R. Dragone, A. Marucci, G. Mattei, J. Phys. Chem. B 101, 11129 (1997)

    Google Scholar 

  55. 55.

    I. Kosacki, T. Suzuki, H.U. Anderson, P. Colomban, Solid State Ionics 149, 99 (2002)

    Google Scholar 

  56. 56.

    S. Bandi, D. Vidyasagar, S. Adil, M.K. Singh, J. Basu, A.K. Srivastav, Scr. Mater. 176, 47 (2020)

    Google Scholar 

  57. 57.

    Y.C. Liang, C.W. Chang, Coatings 9, 90 (2019)

    Google Scholar 

  58. 58.

    F. Wang, C. Di Valentin, G. Pacchioni, J. Phys. Chem. C 115, 8345 (2011)

    Google Scholar 

  59. 59.

    R. Chatten, A.V. Chadwick, A. Rougier, P.J.D. Lindan, J. Phys. Chem. B 109, 3146 (2005)

    Google Scholar 

  60. 60.

    H. Jin, J. Zhu, W. Chen, Z. Fang, Y. Li, Y. Zhang, X. Huang, K. Ding, L. Ning, W. Chen, J. Phys. Chem. C 116, 5067 (2012)

    Google Scholar 

  61. 61.

    H. Jin, H. Zhou, Y. Zhang, Sensors (Switzerland) 17, 1 (2017)

    Google Scholar 

  62. 62.

    C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088 (2010)

    ADS  Google Scholar 

  63. 63.

    N. Zhang, S. Ruan, J. Han, Y. Yin, X. Li, C. Liu, S. Adimi, S. Wen, Y. Xu, Sensors Actuators. B Chem. 295, 117 (2019)

    Google Scholar 

  64. 64.

    W. Kim, M. Choi, K. Yong, Sensors Actuators. B Chem. 209, 989 (2015)

    Google Scholar 

  65. 65.

    N. Barsan, M. Schweizer-Berberich, W. Göpel, Fresenius. J. Anal. Chem. 365, 287 (1999)

    Google Scholar 

Download references


M.J.R.A. wishes to thank Vicerrectoría de Investigación y Estudios de Posgrado for the financial support via 100524279-VIEP2019 Project. The authors are grateful to Laboratorio de Difracción de Rayos X of Laboratorio de Cristalografía Aplicada Escuela de Ciencia y Tecnología—Universidad Nacional de San Martin and Laboratorio Central at the Instituto de Física (IFUAP) of the Benemérita Universidad Autónoma de Puebla for the X-ray diffraction and Raman spectroscopy measurements. R.L.R. wishes to thank CONACyT for Scholarship Grant No. 920025


This work was financially supported by Consejo Nacional de Ciencia y Tecnología (CONACyT)[Grant Agreement No.920025], Vicerrectoría de Investigación y Estudios de Posgrado (VIEP)[Project 100524279-VIEP2019].

Author information




All authors contributed to the study conception and design. M.J Robles-Aguila contributed to conceptualization; Lozano-Rosas, R., Robles-Águila, M. J., T.V.K. Karthik contributed to methodology; Lozano-Rosas R., Robles-Águila, M. J., T.V.K. Karthik, Francisco Sánchez-Ochoa, Diego G. Lamas contributed to formal analysis and investigation; Lozano-Rosas, R., Robles-Águila, M. J., T.V.K. Karthik contributed to writing—original draft preparation; Gregorio H. Cocoletzi, T.V.K. Karthik, Robles-Águila, M. J., Francisco Sánchez-Ochoa contributed to writing—review and editing; M.J Robles-Águila contributed to funding acquisition; Gregorio H. Cocoletzi contributed to supervision.

Corresponding author

Correspondence to M. J. Robles-Águila.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 716 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lozano-Rosas, R., Lamas, D.G., Sánchez-Ochoa, F. et al. CO2 sensing properties of WO3 powder: experimental and theoretical studies. Appl. Phys. A 127, 815 (2021).

Download citation


  • Sensors
  • Tungsten oxide
  • Ultrasound radiation
  • Sensing properties
  • CO2 detection