Skip to main content
Log in

Magnetic structure, mechanical stability and thermoelectric properties of VTiRhZ (Z = Si, Ge, Sn) quaternary Heusler alloys: first-principles calculations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The magnetic structure, mechanical stability, and thermoelectric properties of quaternary VTiRhZ (Z = Si, Ge, Sn) Heusler alloys are investigated based on density functional theory (DFT). The calculations show that Y-type-I configuration is the most stable crystal structure for the studied alloys. The three alloys were found to have a half-metallic ferromagnetic structure with indirect band gaps in the majority spin channels of 0.42, 0.25, and 0.12 eV, for VTiRhSi, VTiRhGe, and VTiRhSn, respectively. They exhibit an appreciable total magnetic moment of 2 μB and a perfect spin-polarization of 100%, which are promising for future spintronic applications. The Seebeck coefficient (S), electrical conductivity (σ), and electronic thermal conductivity (κe) of VTiRhZ alloys were calculated using the semi-classical Boltzmann theory, whereas the lattice thermal conductivity (κL) was calculated using Slack’s equation. The calculations predict n-type VTiRhSi and VTiRhGe with figure of merit (ZT) values of 1.13 and 0.62 at 800 K, respectively, whereas VTiRhSn exhibits a p-type with a ZT value of 0.92, which is promising for future thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F.J. Disalvo, Thermoelectric cooling and power generation. Science 285, 703–706 (1999) https://doi.org/10.1126/science.285.5428.703

  2. H.S. Kim, W. Liu, G. Chen, C.W. Chu, Z. Ren, relationship between thermoelectric figure of merit and energy conversion efficiency. Proc. Natl. Acad. Sci. USA 112, 8205–8210 (2015). https://doi.org/10.1073/pnas.1510231112

    Article  ADS  Google Scholar 

  3. A. Pandit, B. Hamad, thermoelectric and lattice dynamics properties of layered MX (M = Sn, Pb; X = S, Te) compounds. Appl. Surf. Sci. 538, 147911 (2021). https://doi.org/10.1016/j.apsusc.2020.147911

    Article  Google Scholar 

  4. M.K. Han, K. Hoang, H. Kong, R. Pcionek, Substitution of Bi for Sb and its role in the thermoelectric properties and nanostructuring in Ag 1-x Pb 18 MTe 20 (M ) Bi, Sb) (x ) 0, 0.14, 0.3). Chem. Mater. 20(10), 3512–3520 (2008) https://doi.org/10.1021/cm703661g

  5. V.L. Ginzburg, Thermoelectric effects in superconductors. J. Supercond. 2, 323–328 (1989). https://doi.org/10.1007/BF00617883

    Article  ADS  Google Scholar 

  6. H. Alqurashi, R. Haleoot, A. Pandit, B. Hamad, Investigations of the electronic, dynamical, and thermoelectric properties of Cd1-xZnxO alloys: First-principles calculations. Mater. Today Commun. 28, 102511 (2021). https://doi.org/10.1016/j.mtcomm.2021.102511

    Article  Google Scholar 

  7. Y. Nishino, S. Deguchi, U. Mizutani, Thermal and transport properties of the Heusler-type Fe2 VAl1-x Gex (0≤x≤0.20) alloys: effect of doping on lattice thermal conductivity, electrical resistivity, and Seebeck coefficient. Phys. Rev. B – Condens. Matter. Mater. Phys. 74, 115115 (2006) https://doi.org/10.1103/PhysRevB.74.115115

  8. L. Gao, S. Zhai, R. Liu, N. Fu, Enhanced thermoelectric performance of CdO Ceramics Via Ba 2+ doping. J. Am. Ceram. Soc. 98, 3285–3290 (2015) https://doi.org/10.1111/jace.13780

  9. K. Rademann, V.S. Raghuwanshi, A. Hoell, Crystallization and Growth Mechanisms of Nanostructures in Silicate Glass: From Complete Characterization Toward Applications. (Elsevier Inc., 2016), pp 89–114

  10. X. Guo, Z. Ni, Z. Liang, H. Luo, Magnetic semiconductors and half-metals in FeRu-based quaternary Heusler alloys. Comput. Mater. Sci. 154, 442–448 (2018). https://doi.org/10.1016/j.commatsci.2018.08.023

    Article  Google Scholar 

  11. L. Zhang, Z.X. Cheng, X.T. Wang, R. Khenata, First-principles investigation of equiatomic quaternary Heusler alloys NbVMnAl and NbFeCrAl and a discussion of the generalized electron-filling rule. J. Supercond. Nov. Magn. 31, 189–196 (2018). https://doi.org/10.1007/s10948-017-4182-6

    Article  Google Scholar 

  12. C.K. Barman, C. Mondal, B. Pathak, A. Alam, Quaternary Heusler alloy: an ideal platform to realize triple point fermions. Phys. Rev. B 99, 045144 (2019). https://doi.org/10.1103/PhysRevB.99.045144

    Article  ADS  Google Scholar 

  13. V. Alijani, J. Winterlik, G.H. Fecher, S.S. Naghavi, C. Felser, Quaternary half-metallic Heusler ferromagnets for spintronics applications. Phys. Rev. B—Condens. Matter Mater. Phys. 83, 184428 (2011). https://doi.org/10.1103/PhysRevB.83.184428

    Article  ADS  Google Scholar 

  14. V. Alijani, S. Ouardi, G.H. Fecher, J. Winterlik, Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMnZ (Z=Al, Ga, Si, Ge). Phys. Rev. B—Condens. Matter Mater. Phys. 84, 224416 (2011). https://doi.org/10.1103/PhysRevB.84.224416

    Article  ADS  Google Scholar 

  15. R. Haleoot, B. Hamad, Thermodynamic and thermoelectric properties of CoFeYGe (Y = Ti, Cr) quaternary Heusler alloys: first principle calculations. J. Phys. Condens. Matter. 32, 075402 (2020). https://doi.org/10.1088/1361-648X/ab5321

    Article  ADS  Google Scholar 

  16. A.Q. Seh, D.C. Gupta, Exploration of highly correlated Co‐based quaternary Heusler alloys for spintronics and thermoelectric applications. Int. J. Energy Res. 43, er.4853 (2019) https://doi.org/10.1002/er.4853

  17. T.T. Lin, Q. Gao, G.D. Liu, X.F. Dai, Dynamical stability, electronic and thermoelectric properties of quaternary ZnFeTiSi Heusler compound. Curr. Appl. Phys. 19, 721–727 (2019). https://doi.org/10.1016/j.cap.2019.03.020

    Article  ADS  Google Scholar 

  18. Y.C. Gao, X. Gao, The half-metallicity of LiMgPdSn-type quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In): A first-principle study. AIP Adv. 5, 057157 (2015). https://doi.org/10.1063/1.4921900

    Article  ADS  Google Scholar 

  19. D. Joubert, G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method first-principles calculations of the electronic and optical properties of CH 3 NH 3 PbI 3 for photovoltaic applications view project one dimensional lattice density functional theory view project from ultrasoft pseudopotentials to the projector augmented-wave method. Artic Phys. Rev. B (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  20. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  ADS  Google Scholar 

  21. P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990). https://doi.org/10.1016/0010-4655(90)90187-6

    Article  ADS  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  23. G.K. H Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006) https://doi.org/10.1016/j.cpc.2006.03.007

  24. S.A. Khandy, J.D. Chai, Thermoelectric properties, phonon, and mechanical stability of new half-metallic quaternary Heusler alloys: FeRhCrZ (Z = Si and Ge). J. Appl. Phys. 127, 165102 (2020). https://doi.org/10.1063/1.5139072

    Article  ADS  Google Scholar 

  25. R. Haleoot, B. Hamad, Ab Initio investigations of the structural, electronic, magnetic, and thermoelectric properties of CoFeCuZ (Z = Al, As, Ga, In, Pb, Sb, Si, Sn) quaternary Heusler alloys. J. Electron. Mater. 48, 1164–1173 (2019). https://doi.org/10.1007/s11664-018-6833-1

    Article  ADS  Google Scholar 

  26. G. Benacchio, I. Titov, A. Malyeyev, I. Peral, M. Bersweiler, P. Bender, D. Mettus, D. Honecker, E. Paul, M. Codure, A. Heinemann, S. Muhlbauer, A. Cakir, M. Acet, A. Michels, Evidence for the formation of nanoprecipitates with magnetically disordered regions in bulk. Phys. Rev. B 99, 184422 (2019). https://doi.org/10.1103/PhysRevB.99.184422

    Article  ADS  Google Scholar 

  27. B. Max, H. Kun, Dynamical theory of crystal lattices - CERN Document Server (1998). https://cds.cern.ch/record/224197

  28. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65, 349–354 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

  29. J.S. Zhao, Q. Gao, L. Li, H.H. Xie, X.R. Hu, C.L. Xu, J.B. Deng, First-principles study of the structure, electronic, magnetic and elastic properties of half-Heusler compounds LiXGe (X = Ca, Sr and Ba). Intermetallics 89, 65–73 (2017). https://doi.org/10.1016/j.intermet.2017.04.011

    Article  Google Scholar 

  30. X. Wang, Z. Cheng, J. Wang, G. Liu, A full spectrum of spintronic properties demonstrated by a C1b-type Heusler compound Mn2Sn subjected to strain engineering. J. Mater. Chem. C 4, 8535–8544 (2016). https://doi.org/10.1039/c6tc02526a

    Article  Google Scholar 

  31. F. Semari, R. Boulechfar, F. Dahmane, A. Ahmed, Phase stability, mechanical, electronic and thermodynamic properties of the Ga3Sc compound: an ab-initio study. Inorg. Chem. Commun. 122, 108304 (2020). https://doi.org/10.1016/j.inoche.2020.108304

    Article  Google Scholar 

  32. X.R. Chen, M.M. Zhong, Y. Feng, Y. Zhou, Structural, electronic, elastic, and thermodynamic properties of the spin-gapless semiconducting Mn2 CoAl inverse Heusler alloy under pressure. Phys. Status Solidi 252, 2830–2839 (2015). https://doi.org/10.1002/pssb.201552389

    Article  Google Scholar 

  33. R. Jain, V.K. Jain, A.R. Chandra, V. Jain, Study of the electronic structure, magnetic and elastic properties and half-metallic stability on variation of lattice constants for CoFeCrZ (Z = P, As, Sb) Heusler alloys. J. Supercond. Nov. Magn. 31, 2399–2409 (2018). https://doi.org/10.1007/s10948-017-4460-3

    Article  Google Scholar 

  34. Y. Lv, X. Zhang, W. Jiang, Phase stability, elastic, anisotropic properties, lattice dynamical and thermodynamic properties of B12M (M=Th, U, Np, Pu) dodecaborides. Ceram. Int. 44, 128–135 (2018). https://doi.org/10.1016/j.ceramint.2017.09.147

    Article  Google Scholar 

  35. S.C. Wu, G.H. Fecher, N.S. Shahab, C. Felser, Elastic properties and stability of Heusler compounds: Cubic Co 2 YZ compounds with L 2 1 structure. J. Appl. Phys. 125, 082523 (2019). https://doi.org/10.1063/1.5054398

    Article  ADS  Google Scholar 

  36. M. Ilkhani, A. Boochani, M. Amiri, M. Asshabi, Mechanical stability and thermoelectric properties of the PdZrTiAl quaternary Heusler: A DFT study. Solid State Commun. 308, 113838 (2020). https://doi.org/10.1016/j.ssc.2020.113838

    Article  Google Scholar 

  37. S.M. Beth, Simple explanation of tunneling spin-polarization of Fe Co, Ni and its alloys. J. Magn. Magn. Mater. 5, 167–171 (1977)

    Article  ADS  Google Scholar 

  38. L. Bainsla, K.G. Suresh, A.K. Nigam, M.M. Raja, B.S. Varaprasad, Y.K. Takahashi, K. Hono, High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy. J. Appl. Phys. 116, 203902 (2014). https://doi.org/10.1063/1.4902831

    Article  ADS  Google Scholar 

  39. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B—Condens Matter Mater. Phys. 66, 1–9 (2002). https://doi.org/10.1103/PhysRevB.66.174429

    Article  Google Scholar 

  40. A.A. Mubarak, S. Saad, F. Hamioud, M. Al-Elaimi, Structural, thermo-elastic, electro-magnetic and thermoelectric attributes of quaternary CoNbMnX (X = Al, Si) Heusler alloys. Solid State Sci. 111, 106397 (2021). https://doi.org/10.1016/j.solidstatesciences.2020.106397

    Article  Google Scholar 

  41. L. Y. Jia, J.L. Xu, R.B. Zhao, et al., New quaternary half-metallic materials of the Z t − 28 rule in LiMgPdSn-type Heusler alloys. J. Supercond. Nov. Magn. 2017 314 31:1067–1072 (2017) https://doi.org/10.1007/S10948-017-4280-5

  42. A. Candan, G. Uǧur, Z. Charifi, H. Baaziz, M.R. Ellialtioǧlu, Electronic structure and vibrational properties in cobalt-based full-Heusler compounds: A first principle study of Co2MnX (X = Si, Ge, Al, Ga). J. Alloys Compd. 560, 215–222 (2013). https://doi.org/10.1016/j.jallcom.2013.01.102

    Article  Google Scholar 

  43. M.H. Elahmar, H. Rached, D. Rached, R. Khenata, G. Murtaza, S.B. Omran, W.K. Ahmed, Structural, mechanical, electronic and magnetic properties of a new series of quaternary Heusler alloys CoFeMnZ (Z=Si, As, Sb): A first-principle study. J. Magn. Magn. Mater. 393, 165–174 (2015). https://doi.org/10.1016/j.jmmm.2015.05.019

    Article  ADS  Google Scholar 

  44. X.Q. Chen, R. Podloucky, P. Rogl, Ab initio prediction of half-metallic properties for the ferromagnetic Heusler alloys Co2MSi (M=Ti, V, Cr). J. Appl. Phys. 100, 113901 (2006). https://doi.org/10.1063/1.2374672

    Article  ADS  Google Scholar 

  45. J.O. Sofo, G.D. Mahan, Optimum band gap of a thermoelectric material. Phys. Rev. B 49, 4565–4570 (1994). https://doi.org/10.1103/PhysRevB.49.4565

    Article  ADS  Google Scholar 

  46. Z.M. Gibbs, H.S. Kim, H. Wang, G.J. Snyder, Band gap estimation from temperature dependent Seebeck measurement - deviations from the 2e|S|maxTmax relation. Appl. Phys. Lett. 106, 022112 (2015). https://doi.org/10.1063/1.4905922

    Article  ADS  Google Scholar 

  47. E.H. Hasdeo, L.P.A. Krisna, M.Y. Hanna, B.E. Gunara, N.T. Hung, A.R.T. Nugraha Optimal band gap for improved thermoelectric performance of two-dimensional Dirac materials. J. Appl. Phys. 126, 035109 (2019) https://doi.org/10.1063/1.5100985

  48. M. Geilhufe, S.K. Nayak, S. Thomas, M. Däne, G.S. Tripathi, P. Entel, W. Hergert, A. Ernst, Effect of hydrostatic pressure and uniaxial strain on the electronic structure of Pb1-xSnxTe. Phys. Rev. B—Condens. Matter Mater. Phys. 92, 235203 (2015). https://doi.org/10.1103/PhysRevB.92.235203

    Article  ADS  Google Scholar 

  49. S. Singh, D.C. Gupta, Lanthanum based quaternary Heusler alloys LaCoCrX (X = Al, Ga): Hunt for half-metallicity and high thermoelectric efficiency. Results Phys. 13, 102300 (2019). https://doi.org/10.1016/j.rinp.2019.102300

    Article  Google Scholar 

  50. A.J. Hong, L. Li, R. He, J.J. Gong, Z.B. Yan, K.F. Wang, J.M. Liu, Z.F. Ren, Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep22778

    Article  Google Scholar 

  51. H. Ma, C.L. Yang, M.S. Wang, X.G. Ma, Y.G. Yi, Effect of M elements (M = Ti, Zr, and Hf) on thermoelectric performance of the half-Heusler compounds MCoBi. J. Phys. D Appl. Phys. 52, 255501 (2019). https://doi.org/10.1088/1361-6463/ab137d

    Article  ADS  Google Scholar 

  52. R. Haleoot, B. Hamad, Thermoelectric properties of doped β-InSe by Bi: First principle calculations. Phys. B Condens Matter 587, 412105 (2020). https://doi.org/10.1016/j.physb.2020.412105

    Article  Google Scholar 

  53. G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973). https://doi.org/10.1016/0022-3697(73)90092-9

    Article  ADS  Google Scholar 

  54. C. Li, Z. Wang, Computational modelling and ab initio calculations in MAX phases—I. Adv. Sci. Technol. Mn+1AXn Phases 197–222 (2012) https://doi.org/10.1533/9780857096012.197

Download references

Acknowledgements

H. Alqurashi was financially supported by Al-Baha university and Saudi Arabian Cultural Mission. H. Alqurashi acknowledges R. Haleoot and A. Pandit for the fruitful discussions. The calculations were performed on the high-performance computing of the University of Arkansas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hind Alqurashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqurashi, H., Hamad, B. Magnetic structure, mechanical stability and thermoelectric properties of VTiRhZ (Z = Si, Ge, Sn) quaternary Heusler alloys: first-principles calculations. Appl. Phys. A 127, 799 (2021). https://doi.org/10.1007/s00339-021-04949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04949-0

Keywords

Navigation